Harman Patil (Editor)

Tram

Updated on
Share on FacebookTweet on TwitterShare on LinkedInShare on Reddit
Covid-19
Tram

A tram (also tramcar; and in North America streetcar, trolley or trolley car) is a rail vehicle which runs on tracks along public urban streets, and also sometimes on a segregated right of way. The lines or networks operated by tramcars are called tramways. Tramways powered by electricity, the most common type historically, were once called electric street railways (mainly in the USA). However, trams were widely used in urban areas before the universal adoption of electrification; other methods of powering trams are listed below under "History".

Contents

Tram lines may also run between cities and/or towns (for example, interurbans, tram-train), and/or partially grade-separated even in the cities (light rail). Very occasionally, trams also carry freight. Tram vehicles are usually lighter and shorter than conventional trains and rapid transit trains, but the size of trams (particularly light rail vehicles) is rapidly increasing. Some trams (for instance tram-trains) may also run on ordinary railway tracks, a tramway may be upgraded to a light rail or a rapid transit line, two urban tramways may be connected to an interurban, etc. For all these reasons, the differences between the various modes of rail transportation are often indistinct. In the United States, the term tram has sometimes been used for rubber-tired trackless trains, which are not related to the other vehicles covered in this article.

Today, most trams use electrical power, usually fed by an overhead pantograph; in some cases by a sliding shoe on a third rail, trolley pole or bow collector. If necessary, they may have dual power systems — electricity in city streets, and diesel in more rural environments. Trams are now included in the wider term "light rail", which also includes segregated systems.

Etymology and terminology

The English terms tram and tramway are derived from the Scots word tram, referring respectively to a type of truck (goods wagon or freight railroad car) used in coal mines and the tracks on which they ran. The word tram probably derived from Middle Flemish trame ("beam, handle of a barrow, bar, rung"), a Romanesque word meaning the beam or shaft of a barrow or sledge, also the barrow itself. The identical word la trame with the meaning "crossbeam" is also used in the French language. Etymologists believe that the word tram refers to the wooden beams the railway tracks were initially made of before the railroad pioneers switched to the much more wear-resistant tracks made of iron and, later, steel. The word Tram-car is attested from 1873.

Although the terms tram and tramway have been adopted by many languages, they are not used universally in English; North Americans prefer streetcar, trolley, or trolleycar. The term streetcar is first recorded in 1840, and originally referred to horsecars. When electrification came, Americans began to speak of trolleycars or later, trolleys. A widely held belief holds the word to derive from the troller (said to derive from the words traveler and roller), a four-wheeled device that was dragged along dual overhead wires by a cable that connected the troller to the top of the car and collected electrical power from the overhead wires; this portmanteau derivation is, however, most likely folk etymology. "Trolley" and variants refer to the verb troll, meaning 'roll' and probably derived from Old French, and cognate uses of the word were well established for handcarts and horse drayage, as well as for nautical uses.

The troller design frequently fell off the wires, and was soon replaced by other more reliable devices, the trolley pole and notably the bow collector. Both were fitted to the top of the car and were spring-loaded in order to keep, respectively, a small trolley wheel or grooved lubricated "skate" mounted at the top of the pole or a steel rod forming the top of the bow firmly in contact with the underside of the overhead wire. The terms trolley pole and trolley wheel both derive from the troller. Trams using trolley-pole current collection are normally powered through a single pole, with return current earthed through the steel wheels and rails, though some systems (e.g. parts of the London system), used twin overhead wires and poles to avoid the effects of stray currents flowing through the earth. Modern trams often have an overhead pantograph mechanical linkage to connect to power, abandoning the trolley pole altogether.

The alternative North American term trolley may strictly speaking be considered incorrect, as the term can also be applied to cable cars, or conduit cars that instead draw power from an underground supply. Conventional diesel tourist buses decorated to look like streetcars are sometimes called trolleys in the US (tourist trolley). Furthering confusion, the term tram has instead been applied to open-sided, low-speed segmented vehicles on rubber tires generally used to ferry tourists short distances, for example on the Universal Studios backlot tour and, in many countries, as tourist transport to major destinations. The term may also apply to an aerial ropeway, e.g. the Roosevelt Island Tramway.

Over time, the term trolley has fallen into informal use, and may be applied loosely to a wide variety of different vehicle types. The word has taken on a historic or picturesque connotation, and is often associated with tourist or leisure travel. In North America, professional or formal documents generally use more precise alternative terms, such as streetcar or light rail vehicle (LRV).

Although the use of the term trolley for tram was not adopted in Europe, the term was later associated with the trolleybus, a rubber-tyred vehicle running on hard pavement, which draws its power from pairs of overhead wires. These electric buses, which use twin trolley poles, are also called trackless trolleys (particularly in the northeastern US), or sometimes simply trolleys (in the UK, as well as in Seattle and Vancouver).

Horse-drawn

The very first tram was on the Swansea and Mumbles Railway in south Wales, UK; it was horse-drawn at first, and later moved by steam and electric power. The Mumbles Railway Act was passed by the British Parliament in 1804, and the first tram (similar to streetcars in the US some 30 years later) started operating in 1807.

The first streetcars, also known as horsecars in North America, were built in the United States and developed from city stagecoach lines and omnibus lines that picked up and dropped off passengers on a regular route without the need to be pre-hired. These trams were an animal railway, usually using teams of horses and sometimes mules to haul the cars, usually two as a team. Occasionally other animals were put to use, or humans in emergencies. The first streetcar line, developed by Irish born John Stephenson, was the New York and Harlem Railroad's Fourth Avenue Line which ran along The Bowery and Fourth Avenue in New York City. Service began in 1832. It was followed in 1835 by New Orleans, Louisiana, which has the oldest continuously operating street railway system in the world, according to the American Society of Mechanical Engineers.

In other world regions, the first tramway systems (all horse-drawn) were:

  • Continental Europe, 1839 - MONTBRISON to MONTROND, France;
  • South America, 1858 - SANTIAGO, Chile;
  • Africa, 1860 - ALEXANDRIA, Egypt.
  • Oceania, 1860 - SYDNEY, Australia;
  • Asia, 1869 - BATAVIA (now Jakarta), Netherlands East Indies (now Indonesia);
  • In many cases, these early forms of public transport developed out of industrial haulage routes or from the omnibus that first ran on public streets, using the newly invented iron or steel rail or 'tramway'. These were local versions of the stagecoach lines and picked up and dropped off passengers on a regular route, without the need to be pre-hired. Horsecars on tramlines were an improvement over the omnibus as the low rolling resistance of metal wheels on iron or steel rails (usually grooved from 1852 on), allowed the animals to haul a greater load for a given effort than the omnibus and gave a smoother ride. The horse-drawn streetcar combined the low cost, flexibility, and safety of animal power with the efficiency, smoothness, and all-weather capability of a railway.

    In Australia, there were horse-drawn lines or systems in: Adelaide, S.A.; Ballarat, Victoria; Brisbane, Queensland; Gawler, S.A.; Perth, W.A.; Sydney, N.S.W.; Victor Harbor, S.A. - the latter reconstructed and operating as a tourist/heritage line.

    Steam

    The first mechanical trams were powered by steam. Generally, there were two types of steam tram. The first and most common had a small steam locomotive (called a tram engine in the UK) at the head of a line of one or more carriages, similar to a small train. Systems with such steam trams included Christchurch, New Zealand; Sydney, Australia; other city systems in New South Wales; Munich, Germany (from August 1883 on), British India (Pakistan) (from 1885) and the Dublin & Blessington Steam Tramway in Ireland. Steam tramways also were used on the suburban tramway lines around Milan and Padua; the last Gamba de Legn ("Peg-Leg") tramway ran on the Milan-Magenta-Castano Primo route in late 1958.

    Tram engines usually had modifications to make them suitable for street running in residential areas. The wheels, and other moving parts of the machinery, were usually enclosed for safety reasons and to make the engines quieter. Measures were often taken to prevent the engines from emitting visible smoke or steam. Usually the engines used coke rather than coal as fuel to avoid emitting smoke; condensers or superheating were used to avoid emitting visible steam.

    The other style of steam tram had the steam engine in the body of the tram, referred to as a tram engine or steam dummy. The most notable system to adopt such trams was in Paris. French-designed steam trams also operated in Rockhampton, in the Australian state of Queensland between 1909 and 1939. Stockholm, Sweden, had a steam tram line at the island of Södermalm between 1887 and 1901.

    A major drawback of this style of tram was the limited space for the engine, so that these trams were usually underpowered.

    Cable-hauled

    The next motive system for trams was the cable car, which was pulled along a fixed track by a moving steel cable. The power to move the cable was normally provided at a "powerhouse" site a distance away from the actual vehicle.

    The first practical cable car line was tested in San Francisco, in 1873. Part of its success is attributed to the development of an effective and reliable cable grip mechanism, to grab and release the moving cable without damage. The second city to operate cable trams was Dunedin in New Zealand, from 1881 to 1957. From 1885 to 1940, the city of Melbourne, Victoria, Australia operated one of the largest cable systems in the world, at its peak running 592 trams on 75 kilometres (47 mi) of track. There were also two isolated cable lines in Sydney, New South Wales, Australia; the North Sydney line from 1886 to 1900, and the King Street line from 1892 to 1905.

    New York City developed at least seven cable car lines. A line in Washington DC ran to Georgetown (where some of the underground cable vaults can still be seen today). Los Angeles also had several cable car lines, including the Second Street Cable Railroad, which operated from 1885 to 1889, and the Temple Street Cable Railway, which operated from 1886 to 1898. The most extensive cable system in the US was in Chicago between 1882 and 1906.

    In Dresden, Germany, in 1901 an elevated suspended cable car following the Eugen Langen one-railed floating tram system started operating. Cable cars operated on Highgate Hill in North London and Kennington to Brixton Hill In South London. They also worked around "Upper Douglas" in the Isle of Man from 1897 to 1929 (cable car 72/73 is the sole survivor of the fleet).

    Cable cars suffered from high infrastructure costs, since an expensive system of cables, pulleys, stationary engines and lengthy underground vault structures beneath the rails had to be provided. They also required physical strength and skill to operate, and alert operators to avoid obstructions and other cable cars. The cable had to be disconnected ("dropped") at designated locations to allow the cars to coast by inertia, for example when crossing another cable line. The cable would then have to be "picked up" to resume progress, the whole operation requiring precise timing to avoid damage to the cable and the grip mechanism.

    Breaks and frays in the cable, which occurred frequently, required the complete cessation of services over a cable route while the cable was repaired. Due to overall wear, the entire length of cable (typically several kilometres) would have to be replaced on a regular schedule. After the development of reliable electrically powered trams, the costly high-maintenance cable car systems were rapidly replaced in most locations.

    Cable cars remained especially effective in hilly cities, since their nondriven wheels would not lose traction as they climbed or descended a steep hill. The moving cable would physically pull the car up the hill at a steady pace, unlike a low-powered steam or horse-drawn car. Cable cars do have wheel brakes and track brakes, but the cable also helps restrain the car to going downhill at a constant speed. Performance in steep terrain partially explains the survival of cable cars in San Francisco. However, the extensive cable car system of Chicago operated over a large relatively flat area.

    The San Francisco cable cars, though significantly reduced in number, continue to perform a regular transportation function, in addition to being a well-known tourist attraction. A single cable line also survives in Wellington, New Zealand (rebuilt in 1979 as a funicular but still called the "Wellington Cable Car"). A third system, actually two separate cable lines with a shared power station in the middle, operates from the Welsh town of Llandudno up to the top of the Great Orme hill in North Wales, UK.

    Hybrid funicular electric

    The Opicina Tramway in Trieste operates a hybrid funicular electric system. Conventional electric trams are operated in street running and on reserved track for most of their route. However, on one steep segment of track, they are assisted by cable tractors, which push the trams uphill and act as brakes for the downhill run. For safety, the cable tractors are always deployed on the downhill side of the tram vehicle. Similar systems were used elsewhere in the past, notably on the Queen Anne Counterbalance in Seattle and the Darling Street Wharf line in Sydney.

    Electric (trolley cars)

    Electric trams were first experimentally installed in Saint Petersburg, Russia, invented and tested by Fyodor Pirotsky as early as 1880. These trams, like virtually all others mentioned in this section, used either a trolley pole or a pantograph, to feed power from electric wires strung above the tram route. Nevertheless, there were early experiments with battery-powered trams but these appear to have all been unsuccessful. The first trams in Bendigo, Australia, in 1892, were battery-powered but within as little as three months they were replaced with horse-drawn trams. In New York City some minor lines also used storage batteries. Then, comparatively recently, during the 1950s, a longer battery-operated tramway line ran from Milan to Bergamo. In China there is a Nanjing battery Tram line and has been running since 2014.

    The first regular electric tram service using pantographs or trolley poles, the Gross-Lichterfelde Tramway, was put into service in Lichterfelde, then a suburb of Berlin, (now part of the southwestern Berlin city district of Steglitz-Zehlendorf), by Siemens & Halske AG (company founder Werner von Siemens), in May 1881. It initially drew current from the rails, with overhead wire being installed in 1883. The company Siemens still exists.

    Another was by John Joseph Wright, brother of the famous mining entrepreneur Whitaker Wright, in Toronto in 1883. Earlier installations proved difficult or unreliable. Siemens' line, for example, provided power through a live rail and a return rail, like a model train, limiting the voltage that could be used, and providing electric shocks to people and animals crossing the tracks. Siemens later designed his own method of current collection, from an overhead wire, called the bow collector.

    In 1883, Magnus Volk constructed his 2 feet (610 mm) gauge Volk's Electric Railway along the eastern seafront at Brighton, England. This two kilometer line, re-gauged to 2 feet 9 inches (840 mm) in 1884, remains in service to this day, and is the oldest operating electric tramway in the world. The first tram for permanent service with overhead lines was the Mödling and Hinterbrühl Tram in Austria. It began operating in October 1883, but was closed in 1932.

    Multiple functioning experimental electric trams were exhibited at the 1884 World Cotton Centennial World's Fair in New Orleans, Louisiana, but they were not deemed good enough to replace the Lamm fireless engines that then propelled the St. Charles Avenue Streetcar in that city.

    Sidney Howe Short designed and produced the first electric motor that operated a streetcar without gears. The motor had its armature direct-connected to the streetcar's axle for the driving force. Short pioneered "use of a conduit system of concealed feed" thereby eliminating the necessity of overhead wire, trolley poles and a trolley for street cars and railways. While at the University of Denver he conducted important experiments which established that multiple unit powered cars were a better way to operate trains and trolleys.

    In the United States, electric trams were first tested in service in Richmond, Virginia, in 1888, in the Richmond Union Passenger Railway built by Frank J. Sprague, though the first commercial installation of an electric streetcar in the United States was built in 1884 in Cleveland, Ohio and operated for a period of one year by the East Cleveland Street Railway Company.

    The first electric street tramway in Britain, the Blackpool Tramway, was opened on 29 September 1885 using conduit collection along Blackpool Promenade. Since the closure of the Glasgow Corporation Tramways in 1962, this has been the only first-generation operational tramway in the UK, and is still in operation in a modernised form.

    Sarajevo built a citywide system of electric trams in 1885. Budapest established its tramway system in 1887, and its ring line has grown to be the busiest tram line in Europe, with a tram running every 60 seconds at rush hour (however Istanbul's line T1, with a minimum headway of two minutes, probably carries more passengers – 265,000 per day). Bucharest and Belgrade ran a regular service from 1894. Ljubljana introduced its tram system in 1901 – it closed in 1958.

    In Australia there were electric systems in Sydney, Newcastle, Geelong, Ballarat, Bendigo, Brisbane, Adelaide, Perth, Fremantle, Kalgoorlie, Leonora, Hobart and Launceston. By the 1970s, the only tramway system remaining in Australia was the extensive Melbourne system other than a few single lines remaining elsewhere: the Glenelg Tram, connecting Adelaide to the beachside suburb of Glenelg, and tourist trams in the Victorian Goldfields cities of Bendigo and Ballarat. An unusual line that operated from 1889 to 1896 connected Box Hill, then an outer suburb of Melbourne, to Doncaster, then a favoured picnic spot. In recent years the Melbourne system, generally recognised as one of the largest in the world, has been considerably moderrnised and expanded. The Adelaide line has also been extended to the Entertainment Centre, and there are plans to expand further.

    In 1904 trams were put into operation in Hong Kong. The Hong Kong Tramway is still in operation today and uses double-decker trams exclusively.

    Gas trams

    In the late 19th and early 20th centuries a number of systems in various parts of the world employed trams powered by gas, naphtha gas or coal gas in particular. Gas trams are known to have operated between Alphington and Clifton Hill in the northern suburbs of Melbourne, Australia (1886–1888); in Berlin and Dresden, Germany; in Estonia (1920s–1930); between Jelenia Góra, Cieplice, and Sobieszów in Poland (from 1897); and in the UK at Lytham St Annes, Neath (1896–1920), and Trafford Park, Manchester (1897–1908).

    On 29 December 1886 the Melbourne newspaper The Argus reprinted a report from the San Francisco Bulletin that Mr Noble had demonstrated a new 'motor car' for tramways 'with success'. The tramcar 'exactly similar in size, shape, and capacity to a cable grip car' had the 'motive power' of gas 'with which the reservoir is to be charged once a day at power stations by means of a rubber hose'. The car also carried an electricity generator for 'lighting up the tram and also for driving the engine on steep grades and effecting a start'.

    Comparatively little has been published about gas trams. However, research on the subject was carried out for an article in the October 2011 edition of "The Times", the historical journal of the Australian Association of Timetable Collectors, now the Australian Timetable Association.

    A tram system powered by compressed natural gas was due to open in Malaysia in 2012, but as of 2016 there was no evidence of anything having happened; news about the project appears to have dried up.

    Other power sources

    In some places, other forms of power were used to power the tram. Hastings and some other tramways, for example Stockholms Spårvägar in Sweden and some lines in Karachi, used petrol trams. Paris operated trams that were powered by compressed air using the Mekarski system.

    Galveston Island Trolley in Texas operated diesel trams due to the city's hurricane-prone location, which would result in frequent damage to an electrical supply system.

    Although Portland, Victoria promotes its tourist tram as being a cable car it actually operates using a hidden diesel motor. The tram, which runs on a circular route around the town of Portland, uses 'dummies' (grip-cars) and saloon trailer cars formerly used on the extensive Melbourne cable tramway system and now beautifully restored.

    In March 2015, China South Rail Corporation (CSR) demonstrated the world's first hydrogen fuel cell vehicle tramcar at an assembly facility in Qingdao. The chief engineer of the CSR subsidiary CSR Sifang Co Ltd., Liang Jianying, said that the company is studying how to reduce the running costs of the tram.

    Single-ended vs double-ended

    A double-ended tram has an operator's cab and controls at each end of the vehicle, which allows it to easily be driven at full speed in either direction on a continuous segment of track. Typically at the end of a run, the tram's operator will walk from one end of the tram to the other, and then commence the tram route in the other direction. The tram is usually switched to another track by use of crossover points or Y-points. Conversely, a single-ended vehicle needs a method of turning at termini so that the operator's cab is in the front of the tram for the reverse journey. This usually necessitates a turning loop or triangle. On the other hand, the single cab and controls and fewer door spaces make the tram lighter, increases passenger accommodation (including many more seats) and effects reductions in equipment, weight, first-cost, maintenance cost, and operating expense.

    A single-ended tram has operator's controls at only one end, and can safely be driven at speed in the forward direction but is also capable of reverse movement, typically at slower speed, using a small set of controls at the rear. The configuration of the doors is usually asymmetrical, favouring the side expected to be closest to the street kerb and footpath. At the end of a run, the tram must be turned around via a balloon loop or some other method, to face in the opposite direction for a return trip.

    Two single-ended trams with doors on both sides may be coupled into a (semi-)permanently coupled married pair or twinset, with operator's controls at each end of the combination. Such a setup is operated as if it were a double-ended tram, except that the operator must exit one vehicle and enter the other, when reversing at the end of the run.

    In addition, if overhead electrical power is fed from a trolley pole, the direction of the trolley pole must be reversed at the end of the run, to ensure that the pole is "pulled" behind or "trailing" the vehicle, to avoid 'dewiring'. This was achieved by a member of the crew swinging the pole through 180 degrees (if there was only one pole) or lowering one pole and raising the other if there were two. More commonly nowadays, a bidirectional pantograph may be used to feed power, eliminating the need for an extra procedure when reversing direction.

    Low floor

    From around the 1990s, light rail vehicles not made for the occasional high platform light rail system have usually been of partial or fully low-floor design, with the floor 300 to 360 mm (11.8 to 14.2 in) above top of rail, a capability not found in older vehicles. This allows them to load passengers, including those in wheelchairs, directly from low-rise platforms that are not much more than raised footpaths/sidewalks. This satisfies requirements to provide access to disabled passengers without using expensive wheelchair lifts, while at the same time making boarding faster and easier for other passengers.

    Various companies have developed particular low-floor designs, varying from part-low-floor (with internal steps between the low-floor section and the high-floor sections over the bogies), e.g. Citytram and Siemens S70, to 100% low-floor, where the floor passes through a corridor between the drive wheels, thus maintaining a relatively constant (stepless) level from end to end of the tram.

    Prior to the introduction of the Škoda ForCity, this carried the mechanical penalty of requiring bogies to be fixed and unable to pivot (except for less than 5 degrees in some trams) and thus reducing curve negotiation. This creates undue wear on the tracks and wheels.

    Passengers appreciate the ease of boarding and alighting from low-floor trams and moving about inside 100% low-floor trams. Passenger satisfaction with low-floor trams is high.

    Low-floor trams are now running in many cities around the world, including Adelaide, Amsterdam, Bratislava, Dublin, Gold Coast, Helsinki, Hiroshima, Houston, Istanbul, Melbourne, Milan, Prague, Riga, Strasbourg, Sydney, Vienna, Zagreb and Zürich.

    Ultra low floor

    The Ultra Low Floor or (ULF) tram is a type of low-floor tram operating in Vienna, Austria as of 1997 and in Oradea, Romania, with the lowest floor-height of any such vehicle. In contrast to other low-floor trams, the floor in the interior of ULF is at sidewalk height (about 18 cm or 7 inches above the road surface), which makes access to trams easy for passengers in wheelchairs or with baby carriages. This configuration required a new undercarriage. The axles had to be replaced by a complicated electronic steering of the traction motors. Auxiliary devices are installed largely under the car's roof.

    Articulated

    Articulated trams, invented and first used by the Boston Elevated Railway in 1912–13 at a total length of about twelve meters long (40 ft) for each pioneering example of twin-section articulated tram car, have two or more body sections, connected by flexible joints and a round platform at their pivoting midsection(s). Like articulated buses, they have increased passenger capacity. In practice, these trams can be up to 56 metres (184 ft) long (such as CAF Urbos 3 in Budapest, Hungary), while a regular tram has to be much shorter. With this type, the articulation is normally suspended between carbody sections.

    In the Škoda ForCity, which is the world's first 100% low floor tram with pivoting bogies, a Jacobs bogie supports the articulation between the two or more carbody sections. An articulated tram may be low-floor variety or high (regular) floor variety. Newer model trams may be up to 72 metres (236 ft) long and carry 510 passengers at a comfortable 4 passengers/m2. At crush loadings this would be even higher.

    Double decker

    Double decker trams were commonplace in Great Britain and Dublin Ireland before most tramways were torn up in the 1950s and 1960s.

    New York City's New York Railways experimented in 1912 with a Brill double deck Hedley-Doyle stepless center entrance car, nicknamed the "Broadway Battleship," a term that spread to other large streetcars.

    Hobart, Tasmania, Australia made extensive use of double decker trams. Arguably the most unusual double-decker tram used to run between the isolated Western Australian outback town of Leonora and the nearby settlement of Gwalia.

    Double decker trams still operate in Alexandria, Blackpool and Hong Kong.

    Tram-train

    Tram-train operation uses vehicles such as the Flexity Link and Regio-Citadis, which are suited for use on urban tram lines and also meet the necessary indication, power, and strength requirements for operation on main-line railways. This allows passengers to travel from suburban areas into city-centre destinations without having to change from a train to a tram.

    It has been primarily developed in Germanic countries, in particular Germany and Switzerland. Karlsruhe is a notable pioneer of the tram-train.

    Cargo trams

    Since the 19th century goods have been carried on rail vehicles through the streets, often near docks and steelworks, for example the Weymouth Harbour Tramway in Weymouth, Dorset. Belgian vicinal tramway routes were used to haul agricultural produce, timber and coal from Blégny colliery while several of the US interurbans carried freight. In Australia, three different "Freight Cars" operated in Melbourne between 1927 and 1977 and the city of Kislovodsk in Russia had a freight-only tram system consisting of one line which was used exclusively to deliver bottled Narzan mineral water to the railway station.

    Today, the German city of Dresden has a regular CarGoTram service, run by the world's longest tram trainsets (59.4 metres (195 ft)), carrying car parts across the city centre to its Volkswagen factory. In addition to Dresden, the cities of Vienna and Zürich currently use trams as mobile recycling depots.

    At the turn of the 21st century, a new interest has arisen in using urban tramway systems to transport goods. The motivation now is to reduce air pollution, traffic congestion and damage to road surfaces in city centres.

    One recent proposal to bring cargo tramways back into wider use was the plan by City Cargo Amsterdam to reintroduce them into the city of Amsterdam. In the spring of 2007 the city piloted this cargo tram operation, which among its aims aimed to reduce particulate pollution in the city by 20% by halving the number of lorries (5,000) unloading in the inner city during the permitted timeframe from 07:00 till 10:30. The pilot involved two cargo trams, operating from a distribution centre and delivering to a "hub" where special electric trucks delivered the trams' small containers to their final destination. The trial was successful, releasing an intended investment of €100 million in a fleet of 52 cargo trams distributing from four peripheral "cross docks" to 15 inner-city hubs by 2012. These specially built vehicles would be 30 feet (9.14 m) long with 12 axles and a payload of 30 tonnes (33.1 short tons; 29.5 long tons). On weekdays, trams are planned to make 4 deliveries per hour between 7 a.m. and 11 a.m. and two per hour between 11 a.m. and 11 p.m. With each unloading operation taking on average 10 minutes, this means that each site would be active for 40 minutes out of each hour during the morning rush hour. In early 2009 the scheme was suspended owing to the financial crisis impeding fund-raising.

    Hearse trams

    Specially appointed hearse trams, or funeral trolley cars, were used for funeral processions in many cities in the late 19th and early 20th century, particularly cities with large tram systems. The earliest known example in North America was Mexico City, which was already operating 26 funeral cars in 1886. In the United States, funeral cars were often given names. At the turn of the century, "almost every major city [in the US] had one or more" such cars in operation.

    In Milan, Italy, hearse trams were used from the 1880s (initially horse-drawn) to the 1920s. The main cemeteries, Cimitero Monumentale and Cimitero Maggiore, included funeral tram stations. Additional funeral stations were located at Piazza Firenze and at Porta Romana. In the mid-1940s at least one special hearse tram was used in Turin, Italy. It was introduced due to the wartime shortage of automotive fuel.

    Newcastle, NSW, Australia also operated two hearse trams between 1896 and 1948.

    Dog car

    In Melbourne a "dog car" was used between 1937 and 1955 for transporting dogs and their owners to the Royal Melbourne Showgrounds.

    Contractors' mobile offices

    Two former passenger cars from the Melbourne system were converted and used as mobile offices within the Preston Workshops between 1969 and 1974, by personnel from Commonwealth Engineering and ASEA who were connected with the construction of Melbourne's Z Class cars.

    Restaurant trams

    A number of systems have introduced restaurant trams, particularly as a tourist attraction. This is specifically a modern trend. Systems which have or have had restaurant trams include Adelaide, Bendigo and Melbourne, in Australia; Brussels in Belgium; The Hague in the Netherlands; Christchurch in New Zealand; Milan, Rome and Turin in Italy; Moscow, Russia; Almaty, Kazakhstan and Zurich, Switzerland.

    Restaurant trams are particularly popular in Melbourne where three of the iconic "W" class trams have been converted. All three often run in tandem and there are usually multiple meal sittings. Bookings often close months in advance.

    Bistro trams with buffets operated between Krefeld and Düsseldorf in Germany, while Helsinki in Finland has a pub tram. Frankfurt, Germany has a tourist circle line called "Ebbelwei-Express", in which the traditional local drink "Apfelwein" (locally called "Ebbelwei", a type of hard cider) is served.

    Mobile Library Service

    Munich tram No.24, delivered in 1912, was refurbished as a mobile library in 1928. Known as "Städtische Wanderbücherei München", it was in public service until 1970. It was preserved and is now on public display in a railway museum in Hannover. Edmonton, Alberta used a streetcar bookmobile from 1941 to 1956.

    Nursery trams

    After World War Two, in both Warsaw and Wrocław, Poland, so-called trams-nurseries were in operation, collecting children from the workplaces of their parents (often tram employees). These mobile nurseries either carried the children around the system or delivered them to the nursery school run by transport company.

    Specialized work trams

    Most systems had cars that were converted to specific uses on the system, other than simply the carriage of passengers. As just one example, the Melbourne system used or uses the following "technical" cars : a Ballast Motor, Ballast Trailers, a Blow Car, Breakdown Cars, Conductors and/or Drivers' Instruction Cars, a Laboratory Testing Car, a Line Marking Car, a Pantograph Testing Car, Per Way Locomotives, Rail Grinders, a Rail Hardner Loco., a Scrapper Car, Scrubbers, Sleeper Carriers, Track Cleaners, a Welding Car, a Wheel Transport Car and a Workshops Locomotive.

    Advertising

    Many systems have passenger carrying vehicles with all-over advertising on the exterior and/or the interior.

    Tourist Trams

    Many systems have retained historical trams which will often run over parts of the system for tourists and/or tram enthusiasts.

    In Melbourne, Australia, a number of the iconic W class run throughout each day in a set route which circles the Central Business District. They are primarily for the use of tourists, although often also used by regular commuters.

    Tramway operation

    There are two main types of tramways, the classic tramway built in the early 20th century with the tram system operating in mixed traffic, and the later type which is most often associated with the tram system having its own right of way. Tram systems that have their own right of way are often called light rail but this does not always hold true. Though these two systems differ in their operation, their equipment is much the same.

    Tram stop

    Tram stops may be similar to bus stops in design and use, particularly in street-running sections, where in some cases other vehicles are legally required to stop clear of the tram doors. Some stops may resemble to railway platforms, particularly in private right-of-way sections and where trams are boarded at standard railway platform height, as opposed to using steps at the doorway or low-floor trams.

    Controls

    Trams were traditionally operated with separate levers for applying power and brakes. More modern vehicles use a locomotive-style controller which incorporate a dead man's switch. The success of the PCC streetcar had also seen trams use automobile-style foot controls allowing hands-free operation, particularly when the driver was responsible for fare collection.

    Track

    Tramway track can have different rail profiles to accommodate the various operating environments of the vehicle. They may be embedded into concrete for street-running operation, or use standard ballasted track with railroad ties on high-speed sections. A more ecological solution is to embed tracks into grass turf.

    Power supply

    Electric trams use various devices to collect power from overhead lines. The most common device found today is the pantograph, while some older systems use trolley poles or bow collectors. Ground-level power supply has become a recent innovation. Another new technology uses supercapacitors; when an insulator at a track switch cuts off power from the tram for a short distance along the line, the tram can use energy stored in a large capacitor to drive the tram past the gap in the power feed. A rather obsolete system for power supply is conduit current collection.

    Tram and light rail transit systems around the world

    Throughout the world there are many tram systems; some dating from the late 19th or early 20th centuries. However a large number of the old systems were closed during the mid-20th century because of such perceived drawbacks as route inflexibility and maintenance expense. This was especially the case in North American, Australian, British, French and other West European cities. Some traditional tram systems did however survive and remain operating much as when first built over a century ago. In the past twenty years their numbers have been augmented by modern tramway or light rail systems in cities that had discarded this form of transport. There have also been some new tram systems in cities that never previously had them.

    Statistics

  • Tram and light rail systems operate in 388 cities across the world, 206 of which are in Europe;
  • Since 1985 120 light rail systems have opened;
  • Since 2000 78 systems have opened while 13 have closed. The countries that have opened the most systems since 2000 are the USA (23), France (20), Spain (16), and Turkey (8);
  • 15,618 km of track is in operation, with 850 km in construction and a further 2,350 km planned;
  • The longest systems are in Melbourne (256 km), Saint Petersburg (205 km), Katowice (Upper Silesian Industrial Region) (200 km), Cologne (193 km), Berlin (192 km); Moscow (181 km) and Vienna and Milan (170 km).
  • These lines have 32,345 stops at an average spacing of 484 metres;
  • They carry 13.5 billion passengers a year, 3% of all public transport passengers. The highest-volume systems are Budapest (396 million passengers a year), Prague (333m), Bucharest (322m), Saint Petersburg (312m), and Vienna (305m);
  • The most intensely used networks (passengers per km of, per year) are: Istanbul, Hong Kong, Tokyo and Sarajevo.
  • Just over 36,000 trams and light rail vehicles are in operation. The largest fleets are in Prague (920), Moscow (919), Saint Petersburg (833), Budapest (612) and Warsaw (526);
  • Between 1997 and 2014, 400-450 vehicles have been built per year.
  • Source, as of October 2015:

    Popularity

    Tramways with tramcars (British English) or street railways with streetcars (North American English) were common throughout the industrialised world in the late 19th and early 20th centuries but they had disappeared from most British, Canadian, French and US cities by the mid-20th century.

    By contrast, trams in parts of continental Europe continued to be used by many cities, although there were contractions in some countries, including the Netherlands.

    Since 1980 trams have returned to favour in many places, partly because their tendency to dominate the roadway, formerly seen as a disadvantage, is now considered to be a merit. New systems have been built in the United States, Great Britain, Ireland, France, Australia and many other countries.

    In Milan, Italy, the old "Ventotto" trams are considered by its inhabitants a "symbol" of the city. The same can be said of trams in Melbourne in general, but particularly the iconic W class. The Toronto streetcar system had similarly become an iconic symbol of the city, operating the largest network in the Americas as well as the only large-scale tram system in Canada (not including light rail systems, or heritage lines).

    Major tram systems

    The largest tram ((classic tram, streetcar, straßenbahn) and fast tram, (light rail, stadtbahn)) networks in the world by route length (as of 2016) are Melbourne (256 km (159 mi)), St. Petersburg (205.5 km (127.7 mi)), Cologne (194.8 km (121.0 mi)), Berlin 191.6 km (119.1 mi)), Moscow (183 km (114 mi)), Budapest (172 km (107 mi)), Katowice agglomeration (171 km (106 mi)) and Vienna (170 km (110 mi)).

    Other large systems include (but are not limited to): Dallas Light Rail, modern streetcar and heritage streetcar (155 km (96 mi)), Sofia (153.6 km (95.4 mi)), Leipzig (148.3 km (92.1 mi)), Łódź (145 km (90 mi)), Bucharest (143 km (89 mi)), Prague (142.4 km (88.5 mi)), Kiev (139.9 km (86.9 mi)), Brussels (138.9 km (86.3 mi)), Warsaw (138 km (86 mi)), Dresden (134 km (83 mi)), Los Angeles (133.1 km (82.7 mi)), Bonn Stadtbahn and streetcars (125.32 km (77.87 mi)), Stuttgart (124.5 km (77.4 mi)), Hanover (121 km (75 mi)), Zagreb (116.3 km (72.3 mi)), Bremen (114.6 km (71.2 mi)), Portland metropolitan area light rail and streetcars (108.2 km (67.2 mi)), Paris (104.9 km (65.2 mi)), Mannheim/Ludwigshafen (103.4 km (64.2 mi)), Riga (99.52 km (61.84 mi)), Gothenburg (95 km (59 mi)), Kassel (93.3 km (58.0 mi)), Manchester (92.5 km (57.5 mi)), Kraków (90 km (56 mi)), Dnipropetrovsk (87.8 km (54.6 mi)), Halle (Saale) (87.6 km (54.4 mi)), San Diego (86.1 km (53.5 mi)), Pavlodar (86 km (53 mi)), Turin (84 km (52 mi)), Bochum/Gelsenkirchen (84 km (52 mi)), Zurich (84 km (52 mi)), Toronto (83 km (52 mi)), Amsterdam (80.5 km (50.0 mi)), Munich (79 km (49 mi)), Antwerp (79 km (49 mi)), Denver (76 km (47 mi)), Iași (76 km (47 mi)), Salt Lake Valley light rail and streetcar (75.42 km (46.86 mi)), Dortmund (75 km (47 mi)), Rotterdam (75 km (47 mi)), St. Louis Metropolitan Area (74 km (46 mi)), Lviv (73.5 km (45.7 mi)), Mykolaiv (72.83 km (45.25 mi)), Karlsruhe (71.5 km (44.4 mi)), Brno (70.4 km (43.7 mi)), Porto (70 km (43 mi)), Sacramento (69 km (43 mi)), Frankfurt am Main (68 km (42 mi)), San Jose and its suburbs (67.9 km (42.2 mi)), Lyon (66.3 km (41.2 mi)), Ostrava (65.7 km (40.8 mi)), Basel (65.7 km (40.8 mi), Donetsk (65.7 km (40.8 mi)), Poznań (65.6 km (40.8 mi)), Minsk (62.8 km (39.0 mi)), Szczecin (60 km (37 mi)), Graz (59.8 km (37.2 mi)), Montpellier (55.6 km (34.5 mi)), Pyongyang (53.5 km (33.2 mi)), Essen (52.4 km (32.6 mi)) and Gdańsk (52.2 km (32.4 mi)). This list is not exhaustive.

    The length of the following networks is disputed: Philadelphia trolleycar network comprise from Subway–Surface Trolley Lines with line length 31.9 km (19.8 mi) or by another source 100.8 km (62.6 mi) (the sum of all lines (lines 10 (18.7 km (11.6 mi)), 11 (21.4 km (13.3 mi)), 13 (18.3 km (11.4 mi)), 34 (16.3 km (10.1 mi)) and 36 (26.1 km (16.2 mi))), light rail routes 101 and 102 with length 19.2 km (11.9 mi) and heritage route 15 (line length 13.7 km (8.5 mi)). Put together, it measures 64.6 km (40.1 mi) or 133.5 km (83.0 mi) of line length. The route length is 86.6 km (53.8 mi). Next, San Francisco light rail and streetcars have route length 50 km (31 mi) or 59.4 km (36.9 mi). Except it, in city is 8.3 km (5.2 mi) of cable car. Next networks with disputed route length are Milan (126.5 km (78.6 mi)) or 181 km (112 mi), Düsseldorf Stadtbahn (76 km (47 mi)) or 78 km (48 mi)/streetcars 72 km (45 mi) or 68.5 km (42.6 mi), The Hague (105 km (65 mi)) or by other sources 142 km (88 mi), Strasbourg (40.4 km (25.1 mi)) or 57.5 km (35.7 mi), Kolkata (57 km (35 mi)) or 68 km (42 mi), Nizhny Novgorod (formerly Gorky) (98 km (61 mi)) or 76.5 km (47.5 mi). This list is not exhaustive.

    The longest single tram line in the world is the 68 km (42 mi) Belgian Coast Tram, which runs almost the entire length of the Belgian coast. Another fairly long line is the Valley Metro Rail in Phoenix, Arizona, with its 42 km (26 mi).

    Historically, the Paris Tram System was, at its peak, the world's largest system, with 1,111 km (690 mi) of track in 1925 (according to other sources, ca. 640 km of route length in 1930). However it was completely closed in 1938. The next largest system appears to have been 857 km (533 mi), in Buenos Aires before 19 February 1963. The third largest was Chicago, with over 850 km (530 mi) of track, but it was all converted to trolleybus and bus services by 21 June 1958. Before its decline, the BVG in Berlin operated a very large network with 634 km (394 mi) of route. Before its system started to be converted to trolleybus (and later bus) services in the 1930s (last tramway closed 6 July 1952), the first-generation London network had 555 km (345 mi) of route in 1931. In 1958 trams in Rio de Jainero were employed on (433 km (269 mi)) of track. The final line, the Santa teresa route was closed in 1968. During a period in the 1980s, the world's largest tram system was in Leningrad (now known as St. Petersburg) with 350 km (220 mi), USSR, and was included as such in the Guinness World Records; however Saint Petersburg's tram system has declined in size since the fall of the Soviet Union. Wiena (Vienna) in 1960 had 340 km (211 mi), before the expansion of bus services and the opening of a subway (1976). Substituting subway services for tram routes continues. 320 km (199 mi) was in Minneapolis-Saint Paul in 1947: There streetcars ended 31 October 1953 in Minneapolis and 19 June 1954 in St. Paul. The Sydney tram network, before it was closed on 25 February 1961, had 291 km (181 mi) of route, and was thus the largest in Australia. As from 1961, the Melbourne system (currently recognised as the world's largest) took over Sydney's title as the largest network in Australia.

    Asia

    Tramway systems were well established in the Asian region at the start of the 20th century, but started a steady decline during the mid to late 1930s. The 1960s marked the end of its dominance in public transportation with most major systems closed and the equipment and rails sold for scrap; however, some extensive original lines still remain in service in Hong Kong and Japan. In recent years there has been renewed interest in the tram with modern systems being built in Japan, the Philippines, and South Korea.

    In India trams still operate in Kolkata. Trams were discontinued in Chennai in 1954 and in Mumbai in 1960.

    The Northern and Central areas of the City of Colombo in Sri Lanka had an electric Tram Car system (42" Gauge). This system commenced operations about 1900 and was discontinued by 1960. However, a new tram system is in the process of being bought to Colombo as part of the plan of Western Region Megapolis. Other countries with discontinued tram systems include Indonesia, Malaysia, Thailand, Pakistan and Vietnam. However, a tram system is planned for construction in Gwadar, Pakistan where construction started in late 2011. Trams are also under construction in DHA City, Karachi. In China the cities of Beijing, Zhuhai, Nanjing and Shenzhen are planning tram networks for the future.

    The first Japanese tram line was inaugurated in 1895 as the Kyoto Electric Railroad. The tram reached its zenith in 1932 when 82 rail companies operated 1,479 kilometers of track in 65 cities. The tram declined in popularity through the remaining years of the 1930s and during the 1960s many of the remaining operational tramways were shut down and dismantled.

    Europe

    In many European cities much tramway infrastructure was lost in the mid-20th century, though not always on the same scale as in other parts of the world such as North America. Most of Central and Eastern Europe retained the majority of its tramway systems and it is here that the largest and busiest tram systems in the world are found. Many European cities are rehabilitating, upgrading, expanding and reconstructing their old tramway lines and building new tramway lines. Whereas most systems and vehicles in the tram sector are found in Central and Eastern Europe, in the 1960s and 1970s, tram systems were shut down in many places in Western Europe, however urban transportation has been experiencing a sustained long running revival since the 1990s.

    North America

    In North America, these vehicles are called "streetcars" (or "trolleys"); the term tram is more likely to be understood as a tourist trolley, an aerial tramway, or a people-mover.

    In most North American cities, streetcar lines were largely torn up in the mid-20th century for a variety of financial, technological and social reasons. Exceptions included Boston, New Orleans, Newark, Philadelphia (with a much shrunken network), Pittsburgh, San Francisco, Cleveland, Toronto and Mexico City. Pittsburgh had kept most of its streetcar system serving the city and many suburbs until severe cutbacks on 27 January 1967, making it the longest-lasting large-network US streetcar system, though Pittsburgh's surviving streetcar lines were converted to light rail in the 1980s.

    Toronto currently has the largest streetcar system in the Americas in terms of track length and ridership, operated by the Toronto Transit Commission. This is the only large-scale streetcar system existing in Canada, not including the light rail systems that some Canadian cities currently operate, or heritage streetcar lines operating only seasonally. Toronto's system currently uses Canadian Light Rail Vehicles and Articulated Light Rail Vehicles, after a history of using PCCs, Peter Witt cars, and horse-drawn carriages. The TTC has begun accepting delivery of a fleet of 204 of a variant of Bombardier's Flexity Outlook (also used in some European tram systems) as a replacement. Newer light rail lines in Toronto and Kitchener-Waterloo will be using the Flexity Freedom.

    Streetcars once existed in Edmonton and Calgary, but both Canadian cities shut down their streetcar systems. In the late 1970s and early 1980s, both cities built and expanded new light rail systems. Streetcars also once operated in cities such as Ottawa, Montreal, Quebec City, Kitchener, Hamilton, Kingston, London, Windsor, Peterborough, Regina, and Saskatoon. Some of these cities have restored their old streetcars and now run them as a heritage feature for tourists, such as the Vancouver Downtown Historic Railway.

    San Francisco's Muni Metro system is the largest surviving streetcar system in the United States, and has even revived previously closed streetcar lines such as the F Market & Wharves heritage streetcar line.

    In a trend started in the 1980s, some American cities have brought back streetcars, examples of these being Memphis, Portland, Tampa, Little Rock, Seattle and Dallas. Prior to 2000, most of these new-generation streetcar systems were heritage streetcar lines, using vintage or replica-vintage vehicles, but following the 2001 opening of the Portland Streetcar system – the first to use modern vehicles – most new US systems have been designed to use modern, low-floor cars. Several additional cities are planning or proposing new streetcar systems, and such systems are under construction in Atlanta, Charlotte, Cincinnati, Dallas (a second system), Detroit, Kansas City, Los Angeles, Milwaukee, Oklahoma City, Tucson, and Washington DC. Alternatively, in the late 20th century, several cities installed modern light rail systems, in part along the same corridors as their old streetcars systems, the first of these being the San Diego Trolley in San Diego in 1981.

    Oceania

    Historically, there have been trams in the following Australian cities and towns: Brisbane, Queensland; Rockhampton, Queensland; Sydney, New South Wales; Newcastle, NSW; Maitland, NSW; Broken Hill, NSW; Yass, NSW; Camden, NSW; Melbourne, Victoria; Geelong, Victoria; Ballarat, Victoria; Bendigo, Victoria; Sorrento, Victoria; Adelaide, South Australia; Gawler, South Australia; Victor Harbor, South Australia; Moonta-Wallaroo, South Australia; Perth, Western Australia; Fremantle, WA; Kalgoorlie, WA; Laverton, WA; Hobart, Tasmania; and Launceston, Tasmania. These ranged from extensive systems to single lines. The Sydney system, which closed in 1961, was the most extensive and the largest passenger carrier of any Australian public transport system then or since, moving over 400 million passengers per annum, at its peak.

    Virtually all known types of motive power have been utilised at some stage, in Australia.

    Today, trams can be found in Melbourne (by length, the world's largest system), and to a lesser extent, Adelaide; all other major cities having largely dismantled their networks by the 1970s. Sydney reintroduced its tram in 1997 on a modern light rail network, while Ballarat and Bendigo retained their trams as heritage systems. In 2008 and 2009, the Bendigo Tramway Co. Ltd. conducted trials utilising their heritage trams for regular public transport. Portland, Victoria introduced a tourist tram in 1996 - this uses a former Melbourne cable car dummy and trailer car, but utilising a hidden diesel motor. A completely new publlic transport system opened on the Gold Coast, Queensland on 20 July 2014. The new system is known as the G:link and is the first tram/ light rail system in Queensland, Australia since Brisbane closed their tram network in 1969. As from March 2014, the Sydney line was extended to Dulwich Hill, with a further major line planned from Circular Quay to the Sydney south-eastern suburbs. There are also plans for the reintroduction of trams in Perth, Hobart and the western suburbs of Sydney around Parramatta, and for completely new systems in Canberra, and on the Sunshine Coast, Queensland. (Ironically, Walter Burley Griffin's 1912 prize-winning design for Canberra envisioned an extensive tram system.) The construction of light rail in Canberra, to be known as Capital Metro, became the major issue of the October 2016 ACT election, with the ruling ALP strongly supporting Capital Metro, and the coalition of the Liberal Party and the National Party promising not to proceed with the building of light rail but, instead, increase the number of buses. The ALP won the election and construction of Stage 1 of the light rail has commenced.

    The railway into the centre of Newcastle was truncated to Wickham on 25 December 2014, The railway line was to be replaced with a tram but the implementation of this has been postponed a number of times. A bus replacement currently runs from Wickham to Newcastle.

    Many early Australian trams used a lowered central section between bogies (trucks). This made passenger access easier, reducing the number of steps required to reach the inside of the vehicle. It is believed that the design first originated in Christchurch, New Zealand, in the first decade of the 20th century. These cars were frequently referred to as "drop-centres". Trams built since the 1970s have had conventional high or low floors.

    New Zealand's last public transport tramway system, that of Wellington, closed in 1966. Nevertheless, there had been tramways ranging from large, comprehensive systems to single lines, in Auckland, Christchurch, Dunedin, Gisborne, Invercargill, Napier, New Plymouth, Greymouth, Westport, Hokitika, Ross, Brighton, Charleston, Kamiere and Kamara. New Zealand's tram gauges were not standardized; the 15 systems used no less than five gauges, making swapping of rolling stock from system to system difficult. Christchurch has subsequently reintroduced heritage trams over a new CBD route, but the overhead wiring plus some track was damaged by the earthquake of 2011. In November 2013 a limited circuit was reopened. Auckland has recently introduced heritage trams into the Wynyard area, near the CBD, using former Melbourne trams. Preserved Auckland trams from the MOTAT have made cameo appearances during Heritage Weeks. Heritage lines exist at Auckland's MOTAT, the Wellington Tramway Museum at Queen Elizabeth Park on the Kapiti Coast, the Tramways Trust Wanganui and the Tramway Historical Society at Ferrymead in Christchurch, as well as the Christchurch Tramway Limited in the central city.

    South America

    Buenos Aires in Argentina had once one of the most extensive tramway networks in the world with over 857 km (535 mi) of track, most of it dismantled during the 1960s in favor of bus transportation. A new line, the PreMetro line E2 system feeding the Line E of the Buenos Aires Subway has been operating for the past few years on the outskirts of Buenos Aires.

    Also in the city Mendoza, in Argentina, a new tramway system is in construction, the Metrotranvía of Mendoza, which will have a route of 12.5 km and will link five districts of the Greater Mendoza conurbation. The opening of the system is scheduled for August 2011.

    In Medellín, Colombia, a tram line began operation on 15 October 2015, as a revival of old Ayacucho tram.

    Advantages

  • Trams (and road public transport in general) can be much more efficient in terms of road usage - one vehicle replacing about 40 cars which take up a far larger area of road space.
  • Vehicles run more efficiently and overall operating costs are lower.
  • Tram vehicles are very durable, with some being in continuous revenue service for more than fifty years. This is especially compared to internal combustion buses, which tend to require high amounts of maintenance and break down after less than 20 years, mostly due to the vibrations of the engine.
  • In many cases tram networks have a higher capacity than similar buses. This has been cited as a reason for the replacement of one of Europe's busiest bus lines (with three-minute headways in peak times) with a tram by Dresdner Verkehrsbetriebe.
  • Trams and light rail systems can be cheaper to install than subways or other forms of heavy rail
  • Passengers can reach surface stations quicker than underground stations. Subjective safety at surface stations is often seen to be higher
  • Trams can be tourist attractions in ways buses usually aren't
  • Disadvantages

  • Tram tracks can be hazardous for cyclists, as bikes, particularly those with narrow tyres, may get their wheels caught in the track grooves. It is possible to close the grooves of the tracks on critical sections by rubber profiles that are pressed down by the wheelflanges of the passing tram but that cannot be lowered by the weight of a cyclist. If not well-maintained, however, these lose their effectiveness over time.
  • When wet, tram tracks tend to become slippery and thus dangerous for bicycles and motorcycles, especially in traffic. In some cases, even cars can be affected.
  • The opening of new tram and light rail systems has sometimes been accompanied by a marked increase in car accidents, as a result of drivers' unfamiliarity with the physics and geometry of trams. Though such increases may be temporary, long-term conflicts between motorists and light rail operations can be alleviated by segregating their respective rights-of-way and installing appropriate signage and warning systems.
  • Rail transport can expose neighbouring populations to moderate levels of low-frequency noise. However, transportation planners use noise mitigation strategies to minimize these effects. Most of all, the potential for decreased private motor vehicle operations along the trolley's service line because of the service provision could result in lower ambient noise levels than without.
  • There are many references to trams in popular culture, major references include:-

    In literature

  • One of the earliest literary references to trams occurs on the second page of Henry James's novel The Europeans:
  • "From time to time a strange vehicle drew near to the place where they stood—such a vehicle as the lady at the window, in spite of a considerable acquaintance with human inventions, had never seen before: a huge, low, omnibus, painted in brilliant colours, and decorated apparently with jingling bells, attached to a species of groove in the pavement, through which it was dragged, with a great deal of rumbling, bouncing, and scratching, by a couple of remarkably small horses." Published in 1878, the novel is set in the 1840s, though horse trams were not introduced in Boston till the 1850s. Note how the tram's efficiency surprises the European visitor; how two "remarkably small" horses sufficed to draw the "huge" tramcar.
  • Henry James also makes comical reference to the novelty and excitement of trams in Portrait of a Lady (1881):
  • "Henrietta Stackpole was struck with the fact that ancient Rome had been paved a good deal like New York, and even found an analogy between the deep chariot-ruts traceable in the antique street and the overjangled iron grooves which express the intensity of American life."
  • Joseph Conrad described Amsterdam's trams in chapter 14 of The Mirror of the Sea (1906): "From afar at the end of Tsar Peter Straat, issued in the frosty air the tinkle of bells of the horse tramcars, appearing and disappearing in the opening between the buildings, like little toy carriages harnessed with toy horses and played with by people that appeared no bigger than children."
  • In episode 6 (Hades) of James Joyce's Ulysses (1918), the party on the way to Paddy Dignam's funeral in a horse-drawn carriage idly debates the merits of various tramway improvements:
  • - I can't make out why the corporation doesn't run a tramline from the parkgate to the quays, Mr Bloom said. All those animals could be taken in trucks down to the boats. - Instead of blocking up the thoroughfare, Martin Cunningham said. Quite so. They ought to. - Yes, Mr Bloom said, and another thing I often thought is to have municipal funeral trams like they have in Milan, you know. Run the line out to the cemetery gates and have special trams, hearse and carriage and all. Don't you see what I mean?  – O that be damned for a story, Mr Dedalus said. Pullman car and saloon diningroom.  – A poor lookout for Corny [the undertaker], Mr Power added.  – Why? Mr Bloom asked, turning to Mr Dedalus. Wouldn't it be more decent than galloping two abreast?
  • In his fictionalised but autobiographical Memoirs of an Infantry Officer, published in 1930, Siegfried Sassoon's narrator ruminates from his hospital bed in Denmark Hill, London, in 1917 that "Even the screech and rumble of electric trams was a friendly sound; trams meant safety; the troops in the trenches thought about trams with affection."
  • Danzig trams figure extensively in the early stages of Günter Grass's Die Blechtrommel (The Tin Drum). In the last chapter the novel's hero Oskar Matzerath and his friend Gottfried von Vittlar steal a tram late at night from outside Unterrath depot on the northern edge of Düsseldorf. In a surreal journey, von Vittlar drives the tram through the night, south to Flingern and Haniel and then east to the suburb of Gerresheim. Meanwhile, inside, Matzerath tries to rescue the half-blind Victor Weluhn (who had escaped from the siege of the Polish post office in Danzig at the beginning of the book and of the war) from his two green-hatted would-be executioners. Mazerath deposits his briefcase, which contains Sister Dorotea's severed ring finger in a preserving jar, on the dashboard "where professional motorman put their lunchboxes". They leave the tram at the terminus and the executioners tie Weluhn to a tree in von Vittlar's mother's garden and prepare to machine-gun him. But Matzerath drums, Weluhn sings, and together they conjure up the Polish cavalry, who spirit both victim and executioners away. Matzerath asks von Vittlar to take his briefcase in the tram to the police HQ in the Fürstenwall, which he does. The latter part of this route is today served by tram route 703 terminating at Gerresheim Stadtbahn station ("by the glassworks" as Grass notes, referring to the famous glass factory).
  • In his 1967 spy thriller An Expensive Place to Die, Len Deighton misidentifies the Flemish coast tram: "The red glow of Ostend is nearer now and yellow trains rattle alongside the motor road and over the bridge by the Royal Yacht Club..."
  • In Funeral in Berlin the protagonist approaches Checkpoint Charlie driving "across the tram tracks of Zimmerstrasse that bump you into a world where 'communist' is not a dirty word".
  • The Rev W. Awdry wrote about GER Class C53 called Toby the Tram Engine, which starred in his The Railway Series with his faithful coach, Henrietta.
  • In Chrome Shelled Regios, a Japanese novel, trams are featured in the futuristic city of Zuelni.
  • In Haruki Murakami's novel Norwegian Wood, protagonist Toru Watanabe takes Tokyo's only surviving tramline, the Toden Arakawa Line, to near Ōtsuka Station: "I sat in the last seat and watched the ancient houses passing close to the window. The tram almost touched the overhanging eaves.... The tram snaked its way through this private back-alley world."
  • In Almonds and Raisins by Maisie Mosco, a novel about Jewish immigration to Manchester, England, from mainland Europe in the early twentieth century, the newly arrived Sanberg family see a tram for the first time - a Manchester double-decker. Abraham (the father) exclaims, "A train with two storeys? And no roof?" [Manchester trams were open-topped in those days.] The local rabbi explains: "In English, they call it a tram.... In Yiddish, we don't have a word for it." "In the wire overhead, there's electricity, we don't have a word for that either."
  • In music

  • "The Trolley Song" in the film Meet Me in St. Louis received an Academy Award nomination.
  • The Stompin' Tom Connors song "To It And At It" mentions a man who "can't afford the train, he's sittin' on a streetcar, but he's eastbound just the same". And his song "TTC Skidaddler" makes reference to a TTC Streetcar driver: "I've been a streetcar driver now about eleven years and I know the old Toronto city well, There's a whole lotta people who wait along the track, For the signal from my clangin trolley bell...".
  • Jens Lekman has a song titled "Tram No. 7 to Heaven", a reference to line 7 of the Gothenburg tram which passes through his native borough of Kortedala.
  • The band Beirut has a song titled "Fountains and Tramways" on the EP Pompeii.
  • In 2009 Thomas Haggerty composed and produced 'Tram' generations 1, 2 and 3 for the Slowcore/Indie Rock group, Tram.
  • In the visual arts

  • Tramway is a contemporary visual and performing arts venue located in the Scottish city of Glasgow. Based in the former Coplawill Glasgow Corporation Tramways depot in the Pollokshields area of the South Side, it consists of two performance spaces and two galleries, as well as offering facilities for community and artistic projects. It is claimed to be one of the leading venues of its type in Europe.
  • A major feature of Spencer Street railway station, Melbourne from 1978 to 2005 was the giant Cavalcade of Transport mural, measuring 7 by 38 metres (23 by 125 ft). It was financed by the Victorian state government, and painted by Harold Freedman. It features all forms of transport used in Victoria from 1835 to 1978, with trams featuring prominently. A horizontal column of trams shows the progression of vehicle design, with some dozens of trams being illustrated. In 2000, during a revamp and renaming of the station to Southern Cross railway station, part of the mural was removed. It was taken down completely in 2005 and, after a cleaning, was in 2007 relocated to Spencer Outlet Centre, adjoining the railway station.
  • A sculpture of tram 1040, the last numbered of Melbourne's iconic "W" class trams was unveiled at the corner of Flinders and Spencer Streets, Melbourne, in October 2013. The sculpture is the work of local artist David Bell. It can be viewed from a number of tram routes, and is just one block from Southern Cross railway station.
  • A Melbourne tram is featured in an Albert Tucker painting in his 1945 series Images of Modern Evil. The original is held in the collection of the National Gallery of Victoria.
  • In drama

  • A Streetcar Named Desire was written by Tennessee Williams in 1947.
  • The Australian play, Storming Mont Albert by Tram, is set on Melbourne tram route 109. Written by Paul Davies, it was first performed in February/March 1982 as part of Melbourne's Moomba festival.
  • In film

  • Alfred Hitchcock was a well-known rail enthusiast with a particular interest in London trams. An overwhelming majority of his films include rail and/or tram scenes, in particular The Lady Vanishes, Strangers on a Train and Number Seventeen. Often, when the scene and take numbers appeared on a clapperboard during filming, Hitchcock would translate them into London tram route numbers; for example, if Scene 23, Take 2, appeared on the clapperboard, he was wont to whisper: "Woodford; Wimbledon" (the termini of Routes 23 and 2).
  • Dziga Vertov's experimental 1929 film Man with a Movie Camera includes shots of trams (at 10 and 42 minutes).
  • Black Orpheus (1959), has a lead character, Orfeu, who is a tram driver on Rio de Janeiro's tram system.
  • The central plot of the film Who Framed Roger Rabbit involves Judge Doom, the villain, dismantling the streetcars of Los Angeles.
  • Malcolm, is an Australian film about a tram enthusiast who uses his inventions to pull off a bank heist. There are many scenes of Melbourne trams, as well as models of Adelaide trams and (at the end of the film) scenes showing Lisbon trams.
  • Luis Buñuel filmed La Ilusión viaja en tranvía (English: Illusion Travels by Streetcar) in Mexico in 1953.
  • In Akira Kurosawa's film Dodesukaden a mentally ill boy pretends to be a tram conductor.
  • The Elephant Will Never Forget, is an 11-minute film made in 1953 by British Transport Films to celebrate the London tram network, at the time of its last few days of operation.
  • Tramvaj (Tram) is an eight-minute,2012 Czech short animated film directed by Michaela Pavlátová.
  • The 1953 British film, Genevieve is about vintage cars and, more particularly, the eccentricities of the car owners. The second part of the movie is about an unauthorised race between Brighton and London Bridge by the film's two leads, played by John Gregson and Kenneth More. After many trials and tribulations, the hero (Gregson) eventually wins the race when the wheels of More's car gets stuck in the tram tracks and he moves in entirely the wrong direction, just before reaching the Bridge.
  • There have been three film versions of A Streetcar Named Desire: in 1951, in 1984 and in 1995.
  • Ballets

  • The 1993 ballet A Streetcar Named Desire is based on the play A Streetcar Named Desire.
  • Operas

  • The 1995 opera A Streetcar Named Desire is based on the play A Streetcar Named Desire.
  • On television

  • The US children's TV show Mister Rogers' Neighborhood features a trolley (tram). It is shown on National Educational Television, PBS, Sprout and the Canadian Broadcasting Corporation.
  • Trams feature in the opening credits of the world's longest running TV soap opera Coronation Street, set in a fictional suburb of Greater Manchester, and produced by the UK's Granada Television. A Blackpool tram killed one of the main characters in 1989 and the most recent faked accident involved a tram (modelled on the Manchester Metrolink) careering off a viaduct into the set in 2009.
  • Other

  • Toonerville Folks comic strip (1908–55) by Fontaine Fox featured the "Toonerville Trolley that met all the trains."
  • In US baseball, the 1944 World Series was also known as the "Streetcar Series".
  • The predominance of trams (trolleys) in the borough of Brooklyn in New York City gave rise to the disparaging term trolley dodger for residents of the borough. That term, shortened to "Dodger" became the nickname for the Brooklyn Dodgers (now the Los Angeles Dodgers).
  • A W-class Melbourne tram was used at the opening ceremony of the 2006 Commonwealth Games in Melbourne. The "flying tram" (as it was dubbed) is now exhibited at the Melbourne Museum.
  • Tramway, North Carolina, is an area of Lee County, North Carolina which politically forms part of Sanford.
  • Notable incidents involving trams

  • In March 1864, well-known Australian musician and composer Isaac Nathan was hit and killed by a Sydney horse tram. Nathan is reputed to be the first tram fatality in the Southern Hemisphere.
  • On the morning of 18 August 1901, four masked men, described as "urban bushrangers", held up an eastbound horse tram in Riversdale Rd, Hawthorn, Melbourne, just past Power St. For their trouble the men received £2.10.0 in fares from driver Thomas Taylor, and £21.19.0 from eight passengers. One passenger was injured. The bandits were never caught. Contemporary newspapers hypothesised that the bandits were after a specific commuter who travelled regularly on this particular tram and who was in the habit of carrying large amounts of cash.
  • In the Tottenham Outrage in 1909, two armed robbers hijacked a tram and were chased by the police in another tram.
  • On 7 June 1926 Catalan architect Antoni Gaudí was knocked down by a Barcelona tram and subsequently died.
  • It is reputed that in the 1930s a murdered body was dragged out of the Thames River in London. The body had been stripped of anything that might have identified him. The only clue to the person's identity was a portion of a tram ticket hidden in the lining of his coat. The local police did not recognise the ticket but images in newspapers led to it being identified as a Melbourne tram ticket. Serendipitously, the serial number on the ticket was intact. Victoria Police in Melbourne, acting as agents for The Met in London, contacted the Melbourne and Metropolitan Tramways Board. From the serial number, the M&MTB were able to tell which tram depot had issued the ticket, on what day and on which specific tram, and in which section of a particular route (North Balwyn). Police then interviewed regular commuters and discovered the identity of a man whom, they believed, had recently travelled to London. This led to the arrest and conviction of the murderer. Decades after the event, the M&MTB were still citing the incident in training courses as a reason for tram conductors, etc., to keep proper and efficient records.
  • Scale modelling of trams

    Model trams are popular in HO scale (1:87) and O scale (1:48 in the US and generally 1:43,5 and 1:45 in Europe and Asia). They are typically powered and will accept plastic figures inside. Common manufacturers are Roco and Lima, with many custom models being made as well. The German firm Hödl and the Austrian Halling specialize in 1:87 scale.

    In the US, Bachmann Industries is a mass supplier of HO streetcars and kits. Bowser Manufacturing has produced white metal models for over 50 years. There are many boutique vendors offering limited run epoxy and wood models. At the high end are highly detailed brass models which are usually imported from Japan or Korea and can cost in excess of $500. Many of these run on 16.5 mm (0.65 in) gauge track, which is correct for the representation of 4 ft 8 12 in (1,435 mm) (standard gauge) in HO scale as in US and Japan, but incorrect in 4 mm (1:76.2) scale, as it represents 4 ft 8 12 in (1,435 mm). This scale/gauge hybrid is called OO scale. O scale trams are also very popular among tram modellers because the increased size allows for more detail and easier crafting of overhead wiring. In the US these models are usually purchased in epoxy or wood kits and some as brass models. The Saint Petersburg Tram Company produces highly detailed polyurethane non-powered O Scale models from around the world which can easily be powered by trucks from vendors like Q-Car.

    In the US, one of the best resources for model tram enthusiasts is the East Penn Traction Club of Philadelphia and Trolleyville a website of the Southern California Traction Club.

    It is thought that the first example of a working model tramcar in the UK built by an amateur for fun was in 1929, when Frank E. Wilson created a replica of London County Council Tramways E class car 444 in 1:16 scale, which he demonstrated at an early Model Engineer Exhibition. Another of his models was London E/1 1800, which was the only tramway exhibit in the Faraday Memorial Exhibition of 1931. Together with likeminded friends, Frank Wilson went on to found the Tramway & Light Railway Society in 1938, establishing tramway modelling as a hobby.

    References

    Tram Wikipedia


    Topics
     
    B
    i
    Link
    H2
    L