![]() | ||
Real analysis (traditionally, the theory of functions of a real variable) is a branch of mathematical analysis dealing with the real numbers and real-valued functions of a real variable. In particular, it deals with the analytic properties of real functions and sequences, including convergence and limits of sequences of real numbers, the calculus of the real numbers, and continuity, smoothness and related properties of real-valued functions.
Contents
- Construction of the real numbers
- Order properties of the real numbers
- Sequences
- Limits and convergence
- Continuity
- Uniform continuity
- Absolute continuity
- Series
- Taylor series
- Fourier series
- Differentiation
- Riemann integration
- Lebesgue integration
- Distributions
- Relation to complex analysis
- Important results
- References
Construction of the real numbers
The theorems of real analysis rely intimately upon the structure of the real number line. The real number system consists of a set (
In addition to these algebraic notions, the real numbers, equipped with the absolute value function as a metric (that is,
Order properties of the real numbers
The real numbers have several important lattice-theoretic properties that are absent in the complex numbers. Most importantly, the real numbers form an ordered field, in which addition and multiplication preserve positivity. Moreover, the ordering of the real numbers is total, and the real numbers have the least upper bound property. These order-theoretic properties lead to a number of important results in real analysis, such as the monotone convergence theorem, the intermediate value theorem and the mean value theorem.
However, while the results in real analysis are stated for real numbers, many of these results can be generalized to other mathematical objects. In particular, many ideas in functional analysis and operator theory generalize properties of the real numbers – such generalizations include the theories of Riesz spaces and positive operators. Also, mathematicians consider real and imaginary parts of complex sequences, or by pointwise evaluation of operator sequences.
Sequences
A sequence is a function whose domain is a countable, totally ordered set, usually taken to be the natural numbers or whole numbers. Occasionally, it is also convenient to consider bidirectional sequences indexed by the set of all integers, including negative indices.
Of interest in real analysis, a real-valued sequence, here indexed by the natural numbers, is a map
A sequence that tends to a limit (i.e.,
holds, respectively. If either holds, the sequence is said to be monotonic.
Limits and convergence
A limit is the value that a function or sequence "approaches" as the input or index approaches some value. Limits are essential to calculus (and mathematical analysis in general) and are used to define continuity, derivatives, and integrals. In fact, calculus has been defined as the study of limits and limiting processes.
First proposed by Cauchy and made rigorous by Bolzano and Weierstrass, the concept of a limit allowed Newton and Leibniz's calculus to be studied in a logically sound manner, eventually giving rise to analysis as a mathematical discipline. The modern ε-δ definition of the limit of a function of a real variable is given below.
Definition. Let
Intuitively, this definition can be thought of in the following way: We say that
In a closely related context, the concept of a limit applies to the behavior of a sequence
Definition. Let
if
Sometimes, it is useful to conclude that a sequence converges, even though the value to which it converges is unknown or irrelevant. In these cases, the concept of a Cauchy sequence is useful.
Definition. Let
It can be shown that a real-valued sequence is Cauchy if and only if it is convergent. This property of the real numbers is expressed by saying that the real numbers endowed with the standard metric,
In addition, for real-valued sequences that are monotonic, it can be shown that the sequence is bounded if and only if it is convergent.
Continuity
A function from the set of real numbers to the real numbers can be represented by a graph in the Cartesian plane; such a function is continuous if, roughly speaking, the graph is a single unbroken curve with no "holes" or "jumps".
There are several ways to make this intuition mathematically rigorous. Several definitions of varying levels of generality can be given. In cases where two or more definitions are applicable, they are readily shown to be equivalent to one another, so the most convenient definition can be used to determine whether a given function is continuous or not. In the first definition given below,
Definition. If
In contrast to the requirements for
Definition. If
A consequence of this definition is that
Definition. If
(Here,
Uniform continuity
Definition. If
Explicitly, when a function is uniformly continuous on
On a compact set, it is easily shown that all continuous functions are uniformly continuous. If
Absolute continuity
Let
then
Absolutely continuous functions are continuous: consider the case n = 1 in this definition. The collection of all absolutely continuous functions on I is denoted AC(I).
The following conditions on a real-valued function f on a compact interval [a,b] are equivalent:
(1) f is absolutely continuous;(2) f has a derivative f ′ almost everywhere, the derivative is Lebesgue integrable, andIf these equivalent conditions are satisfied then necessarily g = f ′ almost everywhere.
Equivalence between (1) and (3) is known as the fundamental theorem of Lebesgue integral calculus, due to Lebesgue.
Series
Given an (infinite) sequence
It is to be emphasized that the word "sum" is used here in a metaphorical sense as a shorthand for taking the limit of a sequence of partial sums and should not be interpreted as simply "adding" an infinite number of terms. The terms of a series, for instance, cannot be rearranged to give the same sum unless certain conditions are met, unlike what is permitted for a finite sum (see the article on the Riemann rearrangement theorem for further discussion).
An example of a convergent series is a geometric series which forms the basis of one of Zeno's famous paradoxes:
In contrast, the harmonic series has been known since the Middle Ages to be a divergent series:
(Here, "
A series
Taylor series
The Taylor series of a real or complex-valued function ƒ(x) that is infinitely differentiable at a real or complex number a is the power series
which can be written in the more compact sigma notation as
where n! denotes the factorial of n and ƒ (n)(a) denotes the nth derivative of ƒ evaluated at the point a. The derivative of order zero ƒ is defined to be ƒ itself and (x − a)0 and 0! are both defined to be 1. In the case that a = 0, the series is also called a Maclaurin series.
Fourier series
A Fourier series decomposes periodic functions or periodic signals into the sum of a (possibly infinite) set of simple oscillating functions, namely sines and cosines (or complex exponentials). The study of Fourier series is a branch of Fourier analysis.
Differentiation
Formally, the derivative of the function f at a is the limit
If the derivative exists everywhere, the function is differentiable. One can take higher derivatives as well, by iterating this process.
One can classify functions by their differentiability class. The class C0 consists of all continuous functions. The class C1 consists of all differentiable functions whose derivative is continuous; such functions are called continuously differentiable. Thus, a C1 function is exactly a function whose derivative exists and is of class C0. In general, the classes Ck can be defined recursively by declaring C0 to be the set of all continuous functions and declaring Ck for any positive integer k to be the set of all differentiable functions whose derivative is in Ck−1. In particular, Ck is contained in Ck−1 for every k, and there are examples to show that this containment is strict. C∞ is the intersection of the sets Ck as k varies over the non-negative integers. Cω consists of all analytic functions, and is strictly contained in C∞.
Riemann integration
The Riemann integral is defined in terms of Riemann sums of functions with respect to tagged partitions of an interval. Let [a,b] be a closed interval of the real line; then a tagged partition of [a,b] is a finite sequence
This partitions the interval [a,b] into n sub-intervals [xi−1, xi] indexed by i, each of which is "tagged" with a distinguished point ti ∈ [xi−1, xi]. A Riemann sum of a function f with respect to such a tagged partition is defined as
thus each term of the sum is the area of a rectangle with height equal to the function value at the distinguished point of the given sub-interval, and width the same as the sub-interval width. Let Δi = xi−xi−1 be the width of sub-interval i; then the mesh of such a tagged partition is the width of the largest sub-interval formed by the partition, maxi=1...n Δi. The Riemann integral of a function f over the interval [a,b] is equal to S if:
For all ε > 0 there exists δ > 0 such that, for any tagged partition [a,b] with mesh less than δ, we haveWhen the chosen tags give the maximum (respectively, minimum) value of each interval, the Riemann sum becomes an upper (respectively, lower) Darboux sum, suggesting the close connection between the Riemann integral and the Darboux integral.
Lebesgue integration
Lebesgue integration is a mathematical construction that extends the integral to a larger class of functions; it also extends the domains on which these functions can be defined.
Distributions
Distributions (or generalized functions) are objects that generalize functions. Distributions make it possible to differentiate functions whose derivatives do not exist in the classical sense. In particular, any locally integrable function has a distributional derivative.
Relation to complex analysis
Real analysis is an area of analysis that studies concepts such as sequences and their limits, continuity, differentiation, integration and sequences of functions. By definition, real analysis focuses on the real numbers, often including positive and negative infinity to form the extended real line. Real analysis is closely related to complex analysis, which studies broadly the same properties of complex numbers. In complex analysis, it is natural to define differentiation via holomorphic functions, which have a number of useful properties, such as repeated differentiability, expressability as power series, and satisfying the Cauchy integral formula.
In real analysis, it is usually more natural to consider differentiable, smooth, or harmonic functions, which are more widely applicable, but may lack some more powerful properties of holomorphic functions. However, results such as the fundamental theorem of algebra are simpler when expressed in terms of complex numbers.
Techniques from the theory of analytic functions of a complex variable are often used in real analysis – such as evaluation of real integrals by residue calculus.
Important results
Important results include the Bolzano–Weierstrass and Heine–Borel theorems, the intermediate value theorem and mean value theorem, the fundamental theorem of calculus, and the monotone convergence theorem.
Various ideas from real analysis can be generalized from real space to general metric spaces, as well as to measure spaces, Banach spaces, and Hilbert spaces.