400 401 → Ordinal 400th(four hundredth) Roman numeral CD | Cardinal four hundred Factorization 2× 5 | |
Divisors 1, 2, 4, 5, 8, 10, 16, 20, 25, 40, 50, 80, 100, 200, 400 |
400 (four hundred) is the natural number following 399 and preceding 401.
Contents
- Mathematical properties
- Other fields
- 401
- 402
- 403
- 404
- 405
- 406
- 407
- 408
- 409
- 410
- 411
- 412
- 413
- 414
- 415
- 416
- 417
- 418
- 419
- 421
- 422
- 423
- 424
- 425
- 426
- 427
- 428
- 429
- 430
- 431
- 432
- 433
- 434
- 435
- 436
- 437
- 438
- 439
- 440
- 441
- 442
- 443
- 444
- 445
- 446
- 447
- 448
- 449
- 450
- 451
- 452
- 453
- 454
- 455
- 456
- 457
- 458
- 459
- 460
- 461
- 462
- 463
- 464
- 465
- 466
- 467
- 468
- 469
- 470
- 471
- 472
- 473
- 474
- 475
- 476
- 477
- 478
- 479
- 480
- 481
- 482
- 483
- 484
- 485
- 486
- 487
- 488
- 489
- 490
- 491
- 492
- 493
- 494
- 496
- 497
- 498
- 499
- References
Mathematical properties
400 is the square of 20. 400 is the sum of the powers of 7 from 0 to 3, thus making it a repdigit in base 7 (1111).
A circle is divided into 400 grads, which is equal to 360 degrees and 2π radians. (Degrees and radians are the SI accepted units).
400 is a self number in base 10, since there is no integer that added to the sum of its own digits results in 400. On the other hand, 400 is divisible by the sum of its own base 10 digits, making it a Harshad number.
Other fields
Four hundred is also
401
A prime number, tetranacci number, sum of seven consecutive primes (43 + 47 + 53 + 59 + 61 + 67 + 71), sum of nine consecutive primes (29 + 31 + 37 + 41 + 43 + 47 + 53 + 59 + 61), Chen prime, Eisenstein prime with no imaginary part, Mertens function returns 0, member of the Mian–Chowla sequence.
402
402 = 2 × 3 × 67, sphenic number, nontotient, Harshad number,
403
403 = 13 × 31, Mertens function returns 0.
404
404 = 22 × 101, Mertens function returns 0, nontotient, noncototient.
405
405 = 34 × 5, Mertens function returns 0, Harshad number;
406
406 = 2 × 7 × 29, sphenic number, triangular number, centered nonagonal number, nontotient
407
407 = 11 × 37,
408
408 = 23 × 3 × 17
409
409 is a prime number, Chen prime, centered triangular number.
410
410 = 2 × 5 × 41, sphenic number, sum of six consecutive primes (59 + 61 + 67 + 71 + 73 + 79), nontotient, Harshad number
411
411 = 3 × 137, self number,
412
412 = 22 × 103, nontotient, noncototient, sum of twelve consecutive primes (13 + 17 + 19 + 23 + 29 + 31 + 37 + 41 + 43 + 47 + 53 + 59)
413
413 = 7 × 59, Mertens function returns 0, self number
414
414 = 2 × 32 × 23, Mertens function returns 0, nontotient, Harshad number
415
415 = 5 × 83,
416
416 = 25 × 13
417
417 = 3 × 139
418
418 = 2 × 11 × 19, sphenic number,
419
A prime number, Sophie Germain prime, Chen prime, Eisenstein prime with no imaginary part, highly cototient number, Mertens function returns 0
421
A prime number, sum of five consecutive primes (73 + 79 + 83 + 89 + 97), centered square number, also SMTP code meaning the transmission channel will be closing
422
422 = 2 × 211, Mertens function returns 0, nontotient
423
423 = 32 × 47, Mertens function returns 0, Harshad number
424
424 = 23 × 53, sum of ten consecutive primes (23 + 29 + 31 + 37 + 41 + 43 + 47 + 53 + 59 + 61), Mertens function returns 0, refactorable number, self number
425
425 = 52 × 17, pentagonal number, sum of three consecutive primes (137 + 139 + 149), Mertens function returns 0.
426
426 = 2 × 3 × 71, sphenic number, nontotient,
427
427 = 7 × 61, Mertens function returns 0
428
428 = 22 × 107, Mertens function returns 0, nontotient
429
429 = 3 × 11 × 13, sphenic number, Catalan number
430
430 = 2 × 5 × 43, sphenic number, untouchable number
431
A prime number, Sophie Germain prime, sum of seven consecutive primes (47 + 53 + 59 + 61 + 67 + 71 + 73), Chen prime, Eisenstein prime with no imaginary part
432
432 = 24 x 33 = 42 x 33, The sum of four consecutive primes (103 + 107 + 109 + 113), a highly totient number, sum of totient function for first 37 integers. 432! is the first factorial that is not a Harshad number in base 10. 432 is also three-dozen sets of a dozen, making it three gross. An equilateral triangle whose area and perimeter are equal, has an area (and perimeter) equal to
433
A prime number, Markov number, star number.
434
434 = 2 × 7 × 31, sphenic number, sum of six consecutive primes (61 + 67 + 71 + 73 + 79 + 83), nontotient
435
435 = 3 × 5 × 29, sphenic number, triangular number, hexagonal number, self number
436
436 = 22 × 109, nontotient, noncototient
437
437 = 19 × 23
438
438 = 2 × 3 × 73, sphenic number, Smith number.
439
A prime number, sum of three consecutive primes (139 + 149 + 151), sum of nine consecutive primes (31 + 37 + 41 + 43 + 47 + 53 + 59 + 61 + 67), strictly non-palindromic number
440
440 = 23 × 5 × 11, the sum of the first seventeen prime numbers, Harshad number,
441
441 = 32 × 72 = 212
442
442 = 2 × 13 × 17, sphenic number, sum of eight consecutive primes (41 + 43 + 47 + 53 + 59 + 61 + 67 + 71)
443
A prime number, Sophie Germain prime, Chen prime, Eisenstein prime with no imaginary part, Mertens function sets new low of -9, which stands until 659.
444
444 = 22 × 3 × 37, refactorable number, Harshad number.
445
445 = 5 × 89
446
446 = 2 × 223, nontotient, self number
447
447 = 3 × 149
448
448 = 26 × 7, untouchable number, refactorable number, Harshad number
449
A prime number, sum of five consecutive primes (79 + 83 + 89 + 97 + 101), Chen prime, Eisenstein prime with no imaginary part, Proth prime. Also the largest number whose factorial is less than 101000
450
450 = 2 × 32 × 52, nontotient, sum of totient function for first 38 integers, refactorable number, Harshad number,
451
451 = 11 × 41; 451 is a Wedderburn–Etherington number and a centered decagonal number; its reciprocal has period 10; 451 is the smallest number with this period reciprocal length.
452
452 = 22 × 113
453
453 = 3 × 151
454
454 = 2 × 227, nontotient, a Smith number
455
455 = 5 × 7 × 13, sphenic number, tetrahedral number
456
456 = 23 × 3 × 19, sum of a twin prime (227 + 229), sum of four consecutive primes (107 + 109 + 113 + 127), centered pentagonal number
457
458
458 = 2 × 229, nontotient
459
459 = 33 × 17
460
460 = 22 × 5 × 23, centered triangular number, dodecagonal number, Harshad number, sum of twelve consecutive primes (17 + 19 + 23 + 29 + 31 + 37 + 41 + 43 + 47 + 53 + 59 + 61)
461
A prime number, Chen prime, sexy prime with 467, Eisenstein prime with no imaginary part
462
462 = 2 × 3 × 7 × 11, binomial coefficient
463
A prime number, sum of seven consecutive primes (53 + 59 + 61 + 67 + 71 + 73 + 79), centered heptagonal number,
464
464 = 24 × 29, primitive abundant number
465
465 = 3 × 5 × 31, sphenic number, triangular number, member of the Padovan sequence, Harshad number
466
466 = 2 × 233, noncototient
467
A prime number, safe prime, sexy prime with 461, Chen prime, Eisenstein prime with no imaginary part
468
468 = 22 × 32 × 13, sum of ten consecutive primes (29 + 31 + 37 + 41 + 43 + 47 + 53 + 59 + 61 + 67), refactorable number, self number, Harshad number
469
469 = 7 × 67, centered hexagonal number
470
470 = 2 × 5 × 47, sphenic number, nontotient, noncototient
471
471 = 3 × 157, sum of three consecutive primes (151 + 157 + 163), perfect totient number
472
472 = 23 × 59, nontotient, untouchable number, refactorable number
473
473 = 11 × 43, sum of five consecutive primes (83 + 89 + 97 + 101 + 103)
474
474 = 2 × 3 × 79, sphenic number, sum of eight consecutive primes (43 + 47 + 53 + 59 + 61 + 67 + 71 + 73), nontotient, noncototient, sum of totient function for first 39 integers, untouchable number, nonagonal number
475
475 = 52 × 19, 49-gonal number, member of the Mian–Chowla sequence.
476
476 = 22 × 7 × 17, Harshad number
477
477 = 32 × 53, pentagonal number
478
478 = 2 × 239
479
A prime number, safe prime, sum of nine consecutive primes (37 + 41 + 43 + 47 + 53 + 59 + 61 + 67 + 71), Chen prime, Eisenstein prime with no imaginary part, self number
480
480 = 25 × 3 × 5, sum of a twin prime (239 + 241), sum of four consecutive primes (109 + 113 + 127 + 131), highly totient number, refactorable number, Harshad number
481
481 = 13 × 37, octagonal number, centered square number, Harshad number
482
482 = 2 × 241, nontotient, noncototient
483
483 = 3 × 7 × 23, sphenic number, Smith number
484
484 = 22 × 112 = 222, nontotient
485
485 = 5 × 97
486
486 = 2 × 35, Harshad number, Perrin number
487
A prime number, sum of three consecutive primes (157 + 163 + 167), Chen prime,
488
488 = 23 × 61, nontotient, refactorable number
489
489 = 3 × 163, octahedral number
490
490 = 2 × 5 × 72, noncototient, sum of totient function for first 40 integers, partition number (integer partitions of 19), self number.
491
A prime number, Sophie Germain prime, Chen prime, Eisenstein prime with no imaginary part, strictly non-palindromic number
492
492 = 22 × 3 × 41, sum of six consecutive primes (71 + 73 + 79 + 83 + 89 + 97), refactorable number, member of a Ruth–Aaron pair with 493 under first definition
493
493 = 17 × 29, sum of seven consecutive primes (59 + 61 + 67 + 71 + 73 + 79 + 83), member of a Ruth–Aaron pair with 492 under first definition
494
494 = 2 × 13 × 19, sphenic number, nontotient
496
is the third perfect number, a number whose divisors add up to the actual number (1+2+4+8+16+31+62+124+248=496)
497
497 = 7 × 71, sum of five consecutive primes (89 + 97 + 101 + 103 + 107)
498
498 = 2 × 3 × 83, sphenic number, untouchable number, admirable number, abundant number
499
A prime number, Chen prime