In number theory, a nontotient is a positive integer n which is not a totient number: it is not in the range of Euler's totient function φ, that is, the equation φ(x) = n has no solution x. In other words, n is a nontotient if there is no integer x that has exactly n coprimes below it. All odd numbers are nontotients, except 1, since it has the solutions x = 1 and x = 2. The first few even nontotients are
Least k such that the totient of k is n are (start with n = 0, 0 if no such k exists)
0, 1, 3, 0, 5, 0, 7, 0, 15, 0, 11, 0, 13, 0, 0, 0, 17, 0, 19, 0, 25, 0, 23, 0, 35, 0, 0, 0, 29, 0, 31, 0, 51, 0, 0, 0, 37, 0, 0, 0, 41, 0, 43, 0, 69, 0, 47, 0, 65, 0, 0, 0, 53, 0, 81, 0, 87, 0, 59, 0, 61, 0, 0, 0, 85, 0, 67, 0, 0, 0, 71, 0, 73, ... (sequence A049283 in the OEIS)Greatest k such that the totient of k is n are (start with n = 0, 0 if no such k exists)
0, 2, 6, 0, 12, 0, 18, 0, 30, 0, 22, 0, 42, 0, 0, 0, 60, 0, 54, 0, 66, 0, 46, 0, 90, 0, 0, 0, 58, 0, 62, 0, 120, 0, 0, 0, 126, 0, 0, 0, 150, 0, 98, 0, 138, 0, 94, 0, 210, 0, 0, 0, 106, 0, 162, 0, 174, 0, 118, 0, 198, 0, 0, 0, 240, 0, 134, 0, 0, 0, 142, 0, 270, ... (sequence A057635 in the OEIS)Number of ks such that φ(k) = n are (start with n = 0)
1, 2, 3, 0, 4, 0, 4, 0, 5, 0, 2, 0, 6, 0, 0, 0, 6, 0, 4, 0, 5, 0, 2, 0, 10, 0, 0, 0, 2, 0, 2, 0, 7, 0, 0, 0, 8, 0, 0, 0, 9, 0, 4, 0, 3, 0, 2, 0, 11, 0, 0, 0, 2, 0, 2, 0, 3, 0, 2, 0, 9, 0, 0, 0, 8, 0, 2, 0, 0, 0, 2, 0, 17, ... (sequence A014197 in the OEIS)According to Carmichael's conjecture there are no 1's in this sequence except the zeroth term.
An even nontotient may be one more than a prime number, but never one less, since all numbers below a prime number are, by definition, coprime to it. To put it algebraically, for p prime: φ(p) = p − 1. Also, a pronic number n(n − 1) is certainly not a nontotient if n is prime since φ(p2) = p(p − 1).
If a natural number n is a totient, it can be shown that n*2k is a totient for all natural number k.
There are infinitely many nontotient numbers: indeed, there are infinitely many distinct primes p (such as 78557 and 271129, see Sierpinski number) such that all numbers of the form 2ap are nontotient, and every odd number has a multiple which is a nontotient.