Puneet Varma (Editor)

Neutron

Updated on
Edit
Like
Comment
Share on FacebookTweet on TwitterShare on LinkedInShare on Reddit
Statistics
  
Fermionic

Composition
  
2 down quarks, 1 up quark

Symbol
  
n, N⁰, n⁰

Discovered
  
1932

Antiparticle
  
Antineutron

Classification
  
Fermion

Discoverer
  
James Chadwick

Neutron

Theorized
  
Ernest Rutherford (1920)

Mean lifetime
  
7002881500000000000♠881.5(15) s (free)

Electric charge
  
5000000000000000000♠0 e 3021799999999999999♠(−2±8)×10 e (experimental limits)

Electric dipole moment
  
< 6974290000000000000♠2.9×10 e⋅cm (experimental upper limit)

Interactions
  
Gravity, Electromagnetism, Strong interaction, Weak interaction

Mass
  
1.00866491600(43) u, 1.674927351(74)×10⁻²⁷ kg, 939.565378(21) MeV/c²

Protons neutrons and electrons an intro to subatomic particles


The neutron is a subatomic particle, symbol
n
or
n0
, with no net electric charge and a mass slightly larger than that of a proton. Protons and neutrons, each with mass approximately one atomic mass unit, constitute the nucleus of an atom, and they are collectively referred to as nucleons. Their properties and interactions are described by nuclear physics.

Contents

The nucleus consists of Z protons, where Z is called the atomic number, and N neutrons, where N is the neutron number. The atomic number defines the chemical properties of the atom, and the neutron number determines the isotope or nuclide. The terms isotope and nuclide are often used synonymously, but they are chemical and nuclear concepts, respectively. The atomic mass number, symbol A, equals Z+N. For example, carbon has atomic number 6, and its abundant carbon-12 isotope has 6 neutrons, whereas its rare carbon-13 isotope has 7 neutrons. Some elements occur in nature with only one stable isotope, such as fluorine. Other elements occur with many stable isotopes, such as tin with ten stable isotopes. Even though it is not a chemical element, the neutron is included in the table of nuclides.

Within the nucleus, protons and neutrons are bound together through the nuclear force, and neutrons are required for the stability of nuclei. Neutrons are produced copiously in nuclear fission and fusion. They are a primary contributor to the nucleosynthesis of chemical elements within stars through fission, fusion, and neutron capture processes.

The neutron is essential to the production of nuclear power. In the decade after the neutron was discovered in 1932, neutrons were used to induce many different types of nuclear transmutations. With the discovery of nuclear fission in 1938, it was quickly realized that, if a fission event produced neutrons, each of these neutrons might cause further fission events, etc., in a cascade known as a nuclear chain reaction. These events and findings led to the first self-sustaining nuclear reactor (Chicago Pile-1, 1942) and the first nuclear weapon (Trinity, 1945).

Free neutrons, or individual neutrons free of the nucleus, are effectively a form of ionizing radiation, and as such, are a biological hazard, depending upon dose. A small natural "neutron background" flux of free neutrons exists on Earth, caused by cosmic ray showers, and by the natural radioactivity of spontaneously fissionable elements in the Earth's crust. Dedicated neutron sources like neutron generators, research reactors and spallation sources produce free neutrons for use in irradiation and in neutron scattering experiments.

6 1 how protons electrons and neutrons were discovered


Description

Neutrons and protons are both nucleons, which are attracted and bound together by the nuclear force to form atomic nuclei. The nucleus of the most common isotope of the hydrogen atom (with the chemical symbol "H") is a lone proton. The nuclei of the heavy hydrogen isotopes deuterium and tritium contain one proton bound to one and two neutrons, respectively. All other types of atomic nuclei are composed of two or more protons and various numbers of neutrons. The most common nuclide of the common chemical element lead, 208Pb has 82 protons and 126 neutrons, for example.

The free neutron has a mass of about 6973167500000000000♠1.675×10−27 kg (equivalent to 7002939600000000000♠939.6 MeV/c2, or 7000100870000000000♠1.0087 u). The neutron has a mean square radius of about 6984800000000000000♠0.8×10−15 m, or 0.8 fm, and it is a spin-½ fermion. The neutron has a magnetic moment with a negative value, because its orientation is opposite to the neutron's spin. The neutron's magnetic moment causes its motion to be influenced by magnetic fields. Although the neutron has no net electric charge, it does have a slight distribution of charge within it. With its positive electric charge, the proton is directly influenced by electric fields, whereas the response of the neutron to this force is much weaker.

A free neutron is unstable, decaying to a proton, electron and antineutrino with a mean lifetime of just under 15 minutes (7002881500000000000♠881.5±1.5 s). This radioactive decay, known as beta decay, is possible since the mass of the neutron is slightly greater than the proton. The free proton is stable. Neutrons or protons bound in a nucleus can be stable or unstable, however, depending on the nuclide. Beta decay, in which neutrons decay to protons, or vice versa, is governed by the weak force, and it requires the emission or absorption of electrons and neutrinos, or their antiparticles.

Protons and neutrons behave almost identically under the influence of the nuclear force within the nucleus. The concept of isospin, in which the proton and neutron are viewed as two quantum states of the same particle, is used to model the interactions of nucleons by the nuclear or weak forces. Because of the strength of the nuclear force at short distances, the binding energy of nucleons is more than seven orders of magnitude larger than the electromagnetic energy binding electrons in atoms. Nuclear reactions (such as nuclear fission) therefore have an energy density that is more than ten million times that of chemical reactions. Because of the mass–energy equivalence, nuclear binding energies add or subtract from the mass of nuclei. Ultimately, the ability of the nuclear force to store energy arising from the electromagnetic repulsion of nuclear components is the basis for most of the energy that makes nuclear reactors or bombs possible. In nuclear fission, the absorption of a neutron by a heavy nuclide (e.g., uranium-235) causes the nuclide to become unstable and break into light nuclides and additional neutrons. The positively charged light nuclides then repel, releasing electromagnetic potential energy.

The neutron is classified as a hadron, since it is composed of quarks, and as a baryon, since it is composed of three quarks. The finite size of the neutron and its magnetic moment indicate the neutron is a composite, rather than elementary, particle. The neutron consists of two down quarks with charge −⅓  e and one up quark with charge +⅔ e, although this simple model belies the complexities of the Standard Model for nuclei. The masses of the three quarks sum to only about 7001120000000000000♠12 MeV/c2, whereas the neutron's mass is about 7002940000000000000♠940 MeV/c2, for example. Like the proton, the quarks of the neutron are held together by the strong force, mediated by gluons. The nuclear force results from secondary effects of the more fundamental strong force.

Discovery

The story of the discovery of the neutron and its properties is central to the extraordinary developments in atomic physics that occurred in the first half of the 20th century, leading ultimately to the atomic bomb in 1945. In the 1911 Rutherford model, the atom consisted of a small positively charged massive nucleus surrounded by a much larger cloud of negatively charged electrons. In 1920, Rutherford suggested that the nucleus consisted of positive protons and neutrally-charged particles, suggested to be a proton and an electron bound in some way. Electrons were assumed to reside within the nucleus because it was known that beta radiation consisted of electrons emitted from the nucleus. Rutherford called these uncharged particles neutrons, by the Latin root for neutralis (neuter) and the Greek suffix -on (a suffix used in the names of subatomic particles, i.e. electron and proton). References to the word neutron in connection with the atom can be found in the literature as early as 1899, however.

Throughout the 1920s, physicists assumed that the atomic nucleus was composed of protons and "nuclear electrons" but there were obvious problems. It was difficult to reconcile the proton–electron model for nuclei with the Heisenberg uncertainty relation of quantum mechanics. The Klein paradox, discovered by Oskar Klein in 1928, presented further quantum mechanical objections to the notion of an electron confined within a nucleus. Observed properties of atoms and molecules were inconsistent with the nuclear spin expected from the proton–electron hypothesis. Since both protons and electrons carry an intrinsic spin of ½ ħ, there is no way to arrange an odd number of spins ±½ ħ to give a spin integer multiple of ħ. Nuclei with integer spin are common, e.g., 14N.

In 1931, Walther Bothe and Herbert Becker found that if alpha particle radiation from polonium fell on beryllium, boron, or lithium, an unusually penetrating radiation was produced. The radiation was not influenced by an electric field, so Bothe and Becker assumed it was gamma radiation. The following year Irène Joliot-Curie and Frédéric Joliot in Paris showed that if this "gamma" radiation fell on paraffin, or any other hydrogen-containing compound, it ejected protons of very high energy. Neither Rutherford nor James Chadwick at the Cavendish Laboratory in Cambridge were convinced by the gamma ray interpretation. Chadwick quickly performed a series of experiments that showed that the new radiation consisted of uncharged particles with about the same mass as the proton. These particles were neutrons. Chadwick won the Nobel Prize in Physics for this discovery in 1935.

Models for atomic nucleus consisting of protons and neutrons were quickly developed by Werner Heisenberg and others. The proton–neutron model explained the puzzle of nuclear spins. The origins of beta radiation were explained by Enrico Fermi in 1934 by the process of beta decay, in which the neutron decays to a proton by creating an electron and a (as yet undiscovered) neutrino. In 1935 Chadwick and his doctoral student Maurice Goldhaber, reported the first accurate measurement of the mass of the neutron.

By 1934, Fermi had bombarded heavier elements with neutrons to induce radioactivity in elements of high atomic number. In 1938, Fermi received the Nobel Prize in Physics "for his demonstrations of the existence of new radioactive elements produced by neutron irradiation, and for his related discovery of nuclear reactions brought about by slow neutrons". In 1938 Otto Hahn, Lise Meitner, and Fritz Strassmann discovered nuclear fission, or the fractionation of uranium nuclei into light elements, induced by neutron bombardment. In 1945 Hahn received the 1944 Nobel Prize in Chemistry "for his discovery of the fission of heavy atomic nuclei." The discovery of nuclear fission would lead to the development of nuclear power and the atomic bomb by the end of World War II.

Beta decay and the stability of the nucleus

Under the Standard Model of particle physics, the only possible decay mode for the neutron that conserves baryon number is for one of the neutron's quarks to change flavour via the weak interaction. The decay of one of the neutron's down quarks into a lighter up quark can be achieved by the emission of a W boson. By this process, the Standard Model description of beta decay, the neutron decays into a proton (which contains one down and two up quarks), an electron, and an electron antineutrino.

Since interacting protons have a mutual electromagnetic repulsion that is stronger than their attractive nuclear interaction, neutrons are a necessary constituent of any atomic nucleus that contains more than one proton (see diproton and neutron–proton ratio). Neutrons bind with protons and one another in the nucleus via the nuclear force, effectively moderating the repulsive forces between the protons and stabilizing the nucleus.

Free neutron decay

Outside the nucleus, free neutrons are unstable and have a mean lifetime of 7002881500000000000♠881.5±1.5 s (about 14 minutes, 42 seconds); therefore the half-life for this process (which differs from the mean lifetime by a factor of ln(2) = 0.693) is 7002611000000000000♠611.0±1.0 s (about 10 minutes, 11 seconds). Beta decay of the neutron, described above, can be denoted by the radioactive decay:


n0

p+
+
e
+
ν
e

where
p+
,
e
, and
ν
e
denote the proton, electron and electron antineutrino, respectively. For the free neutron the decay energy for this process (based on the masses of the neutron, proton, and electron) is 0.782343 MeV. The maximal energy of the beta decay electron (in the process wherein the neutrino receives a vanishingly small amount of kinetic energy) has been measured at 0.782 ± .013 MeV. The latter number is not well-enough measured to determine the comparatively tiny rest mass of the neutrino (which must in theory be subtracted from the maximal electron kinetic energy) as well as neutrino mass is constrained by many other methods.

A small fraction (about one in 1000) of free neutrons decay with the same products, but add an extra particle in the form of an emitted gamma ray:


n0

p+
+
e
+
ν
e
+
γ

This gamma ray may be thought of as a sort of "internal bremsstrahlung" that arises as the emitted beta particle interacts with the charge of the proton in an electromagnetic way. Internal bremsstrahlung gamma ray production is also a minor feature of beta decays of bound neutrons (as discussed below).

A very small minority of neutron decays (about four per million) are so-called "two-body (neutron) decays", in which a proton, electron and antineutrino are produced as usual, but the electron fails to gain the 13.6 eV necessary energy to escape the proton (the ionization energy of hydrogen), and therefore simply remains bound to it, as a neutral hydrogen atom (one of the "two bodies"). In this type of free neutron decay, in essence all of the neutron decay energy is carried off by the antineutrino (the other "body").

The transformation of a free proton to a neutron (plus a positron and a neutrino) is energetically impossible, since a free neutron has a greater mass than a free proton.

Bound neutron decay

While a free neutron has a half life of about 10.2 min, most neutrons within nuclei are stable. According to the nuclear shell model, the protons and neutrons of a nuclide are a quantum mechanical system organized into discrete energy levels with unique quantum numbers. For a neutron to decay, the resulting proton requires an available state at lower energy than the initial neutron state. In stable nuclei the possible lower energy states are all filled, meaning they are each occupied by two protons with spin up and spin down. The Pauli exclusion principle therefore disallows the decay of a neutron to a proton within stable nuclei. The situation is similar to electrons of an atom, where electrons have distinct atomic orbitals and are prevented from decaying to lower energy states, with the emission of a photon, by the exclusion principle.

Neutrons in unstable nuclei can decay by beta decay as described above. In this case, an energetically allowed quantum state is available for the proton resulting from the decay. One example of this decay is carbon-14 (6 protons, 8 neutrons) that decays to nitrogen-14 (7 protons, 7 neutrons) with a half-life of about 5,730 years.

Inside a nucleus, a proton can transform into a neutron via inverse beta decay, if an energetically allowed quantum state is available for the neutron. This transformation occurs by emission of an antielectron (also called positron) and an electron neutrino:


p+

n0
+
e+
+
ν
e

The transformation of a proton to a neutron inside of a nucleus is also possible through electron capture:


p+
+
e

n0
+
ν
e

Positron capture by neutrons in nuclei that contain an excess of neutrons is also possible, but is hindered because positrons are repelled by the positive nucleus, and quickly annihilate when they encounter electrons.

Competition of beta decay types

Three types of beta decay in competition are illustrated by the single isotope copper-64 (29 protons, 35 neutrons), which has a half-life of about 12.7 hours. This isotope has one unpaired proton and one unpaired neutron, so either the proton or the neutron can decay. This particular nuclide is almost equally likely to undergo proton decay (by positron emission, 18% or by electron capture, 43%) or neutron decay (by electron emission, 39%).

Mass

The mass of a neutron cannot be directly determined by mass spectrometry due to lack of electric charge. However, since the mass of protons and deuterons can be measured by mass spectrometry, the mass of a neutron can be deduced by subtracting proton mass from deuteron mass, with the difference being the mass of the neutron plus the binding energy of deuterium (expressed as a positive emitted energy). The latter can be directly measured by measuring the energy ( B d ) of the single 6987125322244813139♠0.7822 MeV gamma photon emitted when neutrons are captured by protons (this is exothermic and happens with zero-energy neutrons), plus the small recoil kinetic energy ( E r d ) of the deuteron (about 0.06% of the total energy).

m n = m d m p + B d E r d

The energy of the gamma ray can be measured to high precision by X-ray diffraction techniques, as was first done by Bell and Elliot in 1948. The best modern (1986) values for neutron mass by this technique are provided by Greene, et al. These give a neutron mass of:

mneutron = 7000100864490400000♠1.008644904(14) u

The value for the neutron mass in MeV is less accurately known, due to less accuracy in the known conversion of u to MeV:

mneutron = 7002939565630000000♠939.56563(28) MeV/c2.

Another method to determine the mass of a neutron starts from the beta decay of the neutron, when the momenta of the resulting proton and electron are measured.

Electric charge

The total electric charge of the neutron is 5000000000000000000♠e. This zero value has been tested experimentally, and the present experimental limit for the charge of the neutron is 3021799999999999999♠−2(8)×10−22 e,   or 3040700000000000000♠−3(13)×10−41 C. This value is consistent with zero, given the experimental uncertainties (indicated in parentheses). By comparison, the charge of the proton is, of course, 7000100000000000000♠+1 e.

Magnetic moment

Even though the neutron is a neutral particle, the magnetic moment of a neutron is not zero. Since the neutron is a neutral particle, it is not affected by electric fields, but with its magnetic moment it is affected by magnetic fields. The magnetic moment of the neutron is an indication of its quark substructure and internal charge distribution. The value for the neutron's magnetic moment was first directly measured by Luis Alvarez and Felix Bloch at Berkeley, California in 1940, using an extension of the magnetic resonance methods developed by Rabi. Alvarez and Bloch determined the magnetic moment of the neutron to be μn = 2999807000000000000♠−1.93(2) μN, where μN is the nuclear magneton.

In the quark model for hadrons, the neutron is composed of one up quark (charge +2/3 e) and two down quarks (charge −1/3 e). The magnetic moment of the neutron can be modeled as a sum of the magnetic moments of the constituent quarks, although this simple model belies the complexities of the Standard Model of particle physics. The calculation assumes that the quarks behave like pointlike Dirac particles, each having their own magnetic moment. Simplistically, the magnetic moment of the neutron can be viewed as resulting from the vector sum of the three quark magnetic moments, plus the orbital magnetic moments caused by the movement of the three charged quarks within the neutron.

In one of the early successes of the Standard Model (SU(6) theory, now understood in terms of quark behavior), in 1964 Mirza A. B. Beg, Benjamin W. Lee, and Abraham Pais theoretically calculated the ratio of proton to neutron magnetic moments to be −3/2, which agrees with the experimental value to within 3%. The measured value for this ratio is 2999854010194000000♠−1.45989806(34). A contradiction of the quantum mechanical basis of this calculation with the Pauli exclusion principle, led to the discovery of the color charge for quarks by Oscar W. Greenberg in 1964.

The above treatment compares neutrons with protons, allowing the complex behavior of quarks to be subtracted out between models, and merely exploring what the effects would be of differing quark charges (or quark type). Such calculations are enough to show that the interior of neutrons is very much like that of protons, save for the difference in quark composition with a down quark in the neutron replacing an up quark in the proton.

Attempts have been made to quantitatively recover the neutron magnetic moment from first principles. From the nonrelativistic, quantum mechanical wavefunction for baryons composed of three quarks, a straightforward calculation gives fairly accurate estimates for the magnetic moments of neutrons, protons, and other baryons. For a neutron, the end result of this calculation is that the magnetic moment of the neutron is given by μn = 4/3 μd − 1/3 μu, where μd and μu are the magnetic moments for the down and up quarks, respectively. This result combines the intrinsic magnetic moments of the quarks with their orbital magnetic moments, and assumes the three quarks are in a particular, dominant quantum state.

The results of this calculation are encouraging, but the masses of the up or down quarks were assumed to be 1/3 the mass of a nucleon. The masses of the quarks are actually only about 1% that of a nucleon. The discrepancy stems from the complexity of the Standard Model for nucleons, where most of their mass originates in the gluon fields, virtual particles, and their associated energy that are essential aspects of the strong force. Furthermore, the complex system of quarks and gluons that constitute a neutron requires a relativistic treatment. The nucleon magnetic moment has been successfully computed numerically from first principles, however, including all the effects mentioned and using more realistic values for the quark masses. The calculation gave results that were in fair agreement with measurement, but it required significant computing resources.

Spin

The neutron is a spin 1/2 particle, that is, it is a fermion with intrinsic angular momentum equal to 1/2 ħ, where ħ is the reduced Planck constant. For many years after the discovery of the neutron, its exact spin was ambiguous. Although it was assumed to be a spin 1/2 Dirac particle, the possibility that the neutron was a spin 3/2 particle had not been ruled out. The interactions of the neutron's magnetic moment with an external magnetic field were exploited to finally determine the spin of the neutron. In 1949, Hughes and Burgy measured neutrons reflected from a ferromagnetic mirror and found that the angular distribution of the reflections was consistent with spin 1/2. In 1954, Sherwood, Stephenson, and Bernstein employed neutrons in a Stern–Gerlach experiment that used a magnetic field to separate the neutron spin states. They recorded two such spin states, consistent with a spin 1/2 particle.

As a fermion, the neutron is subject to the Pauli exclusion principle; two neutrons cannot have the same quantum numbers. This is the source of the degeneracy pressure which makes neutron stars possible.

Structure and geometry of charge distribution

An article published in 2007 featuring a model-independent analysis concluded that the neutron has a negatively charged exterior, a positively charged middle, and a negative core. In a simplified classical view, the negative "skin" of the neutron assists it to be attracted to the protons with which it interacts in the nucleus. (However, the main attraction between neutrons and protons is via the nuclear force, which does not involve charge.)

The simplified classical view of the neutron's charge distribution also "explains" the fact that the neutron magnetic dipole points in the opposite direction from its spin angular momentum vector (as compared to the proton). This gives the neutron, in effect, a magnetic moment which resembles a negatively charged particle. This can be reconciled classically with a neutral neutron composed of a charge distribution in which the negative sub-parts of the neutron have a larger average radius of distribution, and therefore contribute more to the particle's magnetic dipole moment, than do the positive parts that are, on average, nearer the core.

Electric dipole moment

The Standard Model of particle physics predicts a tiny separation of positive and negative charge within the neutron leading to a permanent electric dipole moment. The predicted value is, however, well below the current sensitivity of experiments. From several unsolved puzzles in particle physics, it is clear that the Standard Model is not the final and full description of all particles and their interactions. New theories going beyond the Standard Model generally lead to much larger predictions for the electric dipole moment of the neutron. Currently, there are at least four experiments trying to measure for the first time a finite neutron electric dipole moment, including:

  • Cryogenic neutron EDM experiment being set up at the Institut Laue–Langevin
  • nEDM experiment under construction at the new UCN source at the Paul Scherrer Institute
  • nEDM experiment being envisaged at the Spallation Neutron Source
  • nEDM experiment being built at the Institut Laue–Langevin
  • Anti-neutron

    The antineutron is the antiparticle of the neutron. It was discovered by Bruce Cork in the year 1956, a year after the antiproton was discovered. CPT-symmetry puts strong constraints on the relative properties of particles and antiparticles, so studying antineutrons yields provide stringent tests on CPT-symmetry. The fractional difference in the masses of the neutron and antineutron is 6995900000000000000♠(9±6)×10−5. Since the difference is only about two standard deviations away from zero, this does not give any convincing evidence of CPT-violation.

    Dineutrons and tetraneutrons

    The existence of stable clusters of 4 neutrons, or tetraneutrons, has been hypothesised by a team led by Francisco-Miguel Marqués at the CNRS Laboratory for Nuclear Physics based on observations of the disintegration of beryllium-14 nuclei. This is particularly interesting because current theory suggests that these clusters should not be stable.

    In February 2016, Japanese physicist Susumu Shimoura of the University of Tokyo and co-workers reported they had observed the purported tetraneutrons for the first time experimentally. Nuclear physicists around the world say this discovery, if confirmed, would be a milestone in the field of nuclear physics and certainly would deepen our understanding of the nuclear forces.

    The dineutron is another hypothetical particle. In 2012, Artemis Spyrou from Michigan State University and coworkers reported that they observed, for the first time, the dineutron emission in the decay of 16Be. The dineutron character is evidenced by a small emission angle between the two neutrons. The authors measured the two-neutron separation energy to be 1.35(10) MeV, in good agreement with shell model calculations, using standard interactions for this mass region.

    Neutronium and neutron stars

    At extremely high pressures and temperatures, nucleons and electrons are believed to collapse into bulk neutronic matter, called neutronium. This is presumed to happen in neutron stars.

    The extreme pressure inside a neutron star may deform the neutrons into a cubic symmetry, allowing tighter packing of neutrons.

    Detection

    The common means of detecting a charged particle by looking for a track of ionization (such as in a cloud chamber) does not work for neutrons directly. Neutrons that elastically scatter off atoms can create an ionization track that is detectable, but the experiments are not as simple to carry out; other means for detecting neutrons, consisting of allowing them to interact with atomic nuclei, are more commonly used. The commonly used methods to detect neutrons can therefore be categorized according to the nuclear processes relied upon, mainly neutron capture or elastic scattering.

    Neutron detection by neutron capture

    A common method for detecting neutrons involves converting the energy released from neutron capture reactions into electrical signals. Certain nuclides have a high neutron capture cross section, which is the probability of absorbing a neutron. Upon neutron capture, the compound nucleus emits more easily detectable radiation, for example an alpha particle, which is then detected. The nuclides 3
    He
    , 6
    Li
    , 10
    B
    , 233
    U
    , 235
    U
    , 237
    Np
    and 239
    Pu
    are useful for this purpose.

    Neutron detection by elastic scattering

    Neutrons can elastically scatter off nuclei, causing the struck nucleus to recoil. Kinematically, a neutron can transfer more energy to light nuclei such as hydrogen or helium than to heavier nuclei. Detectors relying on elastic scattering are called fast neutron detectors. Recoiling nuclei can ionize and excite further atoms through collisions. Charge and/or scintillation light produced in this way can be collected to produce a detected signal. A major challenge in fast neutron detection is discerning such signals from erroneous signals produced by gamma radiation in the same detector.

    Fast neutron detectors have the advantage of not requiring a moderator, and therefore being capable of measuring the neutron's energy, time of arrival, and in certain cases direction of incidence.

    Applications

    The neutron plays an important role in many nuclear reactions. For example, neutron capture often results in neutron activation, inducing radioactivity. In particular, knowledge of neutrons and their behavior has been important in the development of nuclear reactors and nuclear weapons. The fissioning of elements like uranium-235 and plutonium-239 is caused by their absorption of neutrons.

    Cold, thermal and hot neutron radiation is commonly employed in neutron scattering facilities, where the radiation is used in a similar way one uses X-rays for the analysis of condensed matter. Neutrons are complementary to the latter in terms of atomic contrasts by different scattering cross sections; sensitivity to magnetism; energy range for inelastic neutron spectroscopy; and deep penetration into matter.

    The development of "neutron lenses" based on total internal reflection within hollow glass capillary tubes or by reflection from dimpled aluminum plates has driven ongoing research into neutron microscopy and neutron/gamma ray tomography.

    A major use of neutrons is to excite delayed and prompt gamma rays from elements in materials. This forms the basis of neutron activation analysis (NAA) and prompt gamma neutron activation analysis (PGNAA). NAA is most often used to analyze small samples of materials in a nuclear reactor whilst PGNAA is most often used to analyze subterranean rocks around bore holes and industrial bulk materials on conveyor belts.

    Another use of neutron emitters is the detection of light nuclei, in particular the hydrogen found in water molecules. When a fast neutron collides with a light nucleus, it loses a large fraction of its energy. By measuring the rate at which slow neutrons return to the probe after reflecting off of hydrogen nuclei, a neutron probe may determine the water content in soil.

    Medical therapies

    Because neutron radiation is both penetrating and ionizing, it can be exploited for medical treatments. Neutron radiation can have the unfortunate side-effect of leaving the affected area radioactive, however. Neutron tomography is therefore not a viable medical application.

    Fast neutron therapy utilizes high energy neutrons typically greater than 20 MeV to treat cancer. Radiation therapy of cancers is based upon the biological response of cells to ionizing radiation. If radiation is delivered in small sessions to damage cancerous areas, normal tissue will have time to repair itself, while tumor cells often cannot. Neutron radiation can deliver energy to a cancerous region at a rate an order of magnitude larger than gamma radiation

    Beams of low energy neutrons are used in boron capture therapy to treat cancer. In boron capture therapy, the patient is given a drug that contains boron and that preferentially accumulates in the tumor to be targeted. The tumor is then bombarded with very low energy neutrons (although often higher than thermal energy) which are captured by the boron-10 isotope in the boron, which produces an excited state of boron-11 that then decays to produce lithium-7 and an alpha particle that have sufficient energy to kill the malignant cell, but insufficient range to damage nearby cells. For such a therapy to be applied to the treatment of cancer, a neutron source having an intensity of the order of billion (109) neutrons per second per cm2 is preferred. Such fluxes require a research nuclear reactor.

    Protection

    Exposure to free neutrons can be hazardous, since the interaction of neutrons with molecules in the body can cause disruption to molecules and atoms, and can also cause reactions that give rise to other forms of radiation (such as protons). The normal precautions of radiation protection apply: Avoid exposure, stay as far from the source as possible, and keep exposure time to a minimum. Some particular thought must be given to how to protect from neutron exposure, however. For other types of radiation, e.g., alpha particles, beta particles, or gamma rays, material of a high atomic number and with high density make for good shielding; frequently, lead is used. However, this approach will not work with neutrons, since the absorption of neutrons does not increase straightforwardly with atomic number, as it does with alpha, beta, and gamma radiation. Instead one needs to look at the particular interactions neutrons have with matter (see the section on detection above). For example, hydrogen-rich materials are often used to shield against neutrons, since ordinary hydrogen both scatters and slows neutrons. This often means that simple concrete blocks or even paraffin-loaded plastic blocks afford better protection from neutrons than do far more dense materials. After slowing, neutrons may then be absorbed with an isotope that has high affinity for slow neutrons without causing secondary capture radiation, such as lithium-6.

    Hydrogen-rich ordinary water affects neutron absorption in nuclear fission reactors: Usually, neutrons are so strongly absorbed by normal water that fuel enrichment with fissionable isotope is required. The deuterium in heavy water has a very much lower absorption affinity for neutrons than does protium (normal light hydrogen). Deuterium is, therefore, used in CANDU-type reactors, in order to slow (moderate) neutron velocity, to increase the probability of nuclear fission compared to neutron capture.

    Thermal neutrons

    A thermal neutron is a free neutron that is Boltzmann distributed with kT = 6979405350651211000♠0.0253 eV (6979399999999999999♠4.0×10−21 J) at room temperature. This gives characteristic (not average, or median) speed of 2.2 km/s. The name 'thermal' comes from their energy being that of the room temperature gas or material they are permeating. (see kinetic theory for energies and speeds of molecules). After a number of collisions (often in the range of 10–20) with nuclei, neutrons arrive at this energy level, provided that they are not absorbed.

    In many substances, thermal neutron reactions show a much larger effective cross-section than reactions involving faster neutrons, and thermal neutrons can therefore be absorbed more readily (i.e., with higher probability) by any atomic nuclei that they collide with, creating a heavier — and often unstable — isotope of the chemical element as a result.

    Most fission reactors use a neutron moderator to slow down, or thermalize the neutrons that are emitted by nuclear fission so that they are more easily captured, causing further fission. Others, called fast breeder reactors, use fission energy neutrons directly.

    Cold neutrons

    Cold neutrons are thermal neutrons that have been equilibrated in a very cold substance such as liquid deuterium. Such a cold source is placed in the moderator of a research reactor or spallation source. Cold neutrons are particularly valuable for neutron scattering experiments.

    Ultracold neutrons

    Ultracold neutrons are produced by elastically scattering cold neutrons in substances with a temperature of a few kelvins, such as solid deuterium or superfluid helium. An alternative production method is the mechanical deceleration of cold neutrons.

    Fission energy neutrons

    A fast neutron is a free neutron with a kinetic energy level close to 6987160217648700000♠1 MeV (6987160000000000000♠1.6×10−13 J), hence a speed of ~7007140000000000000♠14000 km/s (~5% of the speed of light). They are named fission energy or fast neutrons to distinguish them from lower-energy thermal neutrons, and high-energy neutrons produced in cosmic showers or accelerators. Fast neutrons are produced by nuclear processes such as nuclear fission. Neutrons produced in fission, as noted above, have a Maxwell–Boltzmann distribution of kinetic energies from 0 to ~14 MeV, a mean energy of 2 MeV (for U-235 fission neutrons), and a mode of only 0.75 MeV, which means that more than half of them do not qualify as fast (and thus have almost no chance of initiating fission in fertile materials, such as U-238 and Th-232).

    Fast neutrons can be made into thermal neutrons via a process called moderation. This is done with a neutron moderator. In reactors, typically heavy water, light water, or graphite are used to moderate neutrons.

    Fusion neutrons

    D–T (deuterium–tritium) fusion is the fusion reaction that produces the most energetic neutrons, with 14.1 MeV of kinetic energy and traveling at 17% of the speed of light. D–T fusion is also the easiest fusion reaction to ignite, reaching near-peak rates even when the deuterium and tritium nuclei have only a thousandth as much kinetic energy as the 14.1 MeV that will be produced.

    14.1 MeV neutrons have about 10 times as much energy as fission neutrons, and are very effective at fissioning even non-fissile heavy nuclei, and these high-energy fissions produce more neutrons on average than fissions by lower-energy neutrons. This makes D–T fusion neutron sources such as proposed tokamak power reactors useful for transmutation of transuranic waste. 14.1 MeV neutrons can also produce neutrons by knocking them loose from nuclei.

    On the other hand, these very high energy neutrons are less likely to simply be captured without causing fission or spallation. For these reasons, nuclear weapon design extensively utilizes D–T fusion 14.1 MeV neutrons to cause more fission. Fusion neutrons are able to cause fission in ordinarily non-fissile materials, such as depleted uranium (uranium-238), and these materials have been used in the jackets of thermonuclear weapons. Fusion neutrons also can cause fission in substances that are unsuitable or difficult to make into primary fission bombs, such as reactor grade plutonium. This physical fact thus causes ordinary non-weapons grade materials to become of concern in certain nuclear proliferation discussions and treaties.

    Other fusion reactions produce much less energetic neutrons. D–D fusion produces a 2.45 MeV neutron and helium-3 half of the time, and produces tritium and a proton but no neutron the other half of the time. D–3He fusion produces no neutron.

    Intermediate-energy neutrons

    A fission energy neutron that has slowed down but not yet reached thermal energies is called an epithermal neutron.

    Cross sections for both capture and fission reactions often have multiple resonance peaks at specific energies in the epithermal energy range. These are of less significance in a fast neutron reactor, where most neutrons are absorbed before slowing down to this range, or in a well-moderated thermal reactor, where epithermal neutrons interact mostly with moderator nuclei, not with either fissile or fertile actinide nuclides. However, in a partially moderated reactor with more interactions of epithermal neutrons with heavy metal nuclei, there are greater possibilities for transient changes in reactivity that might make reactor control more difficult.

    Ratios of capture reactions to fission reactions are also worse (more captures without fission) in most nuclear fuels such as plutonium-239, making epithermal-spectrum reactors using these fuels less desirable, as captures not only waste the one neutron captured but also usually result in a nuclide that is not fissile with thermal or epithermal neutrons, though still fissionable with fast neutrons. The exception is uranium-233 of the thorium cycle, which has good capture-fission ratios at all neutron energies.

    High-energy neutrons

    These neutrons have much more energy than fission energy neutrons and are generated as secondary particles by particle accelerators or in the atmosphere from cosmic rays. These high-energy neutrons are extremely efficient at ionization and far more likely to cause cell death than X-rays or protons.

    References

    Neutron Wikipedia