600 BCE Kanada theorizes the existence of four kinds of atoms, which could combine to produce diatomic and triatomic molecules.
430 BCE Democritus speculates about fundamental indivisible particles—calls them "atoms"
200 BCE Jainism calls atom Paramanu which can neither be created nor destroyed. It is eternal, i.e., it existed in the past, exists in the present and will continue to exist in the future. It is the permanent basis of the physical existence. The entire physical existence is composed of these ultimate atoms.
1887 Heinrich Rudolf Hertz discovers the photoelectric effect that will play a very important role in the development of the quantum theory with Einstein's explanation of this effect in terms of quanta of light
1896 Wilhelm Conrad Röntgen discovers the X-rays while studying electrons in plasma; scattering X-rays—that were considered as 'waves' of high-energy electromagnetic radiation—Arthur Compton will be able to demonstrate in 1922 the 'particle' aspect of electromagnetic radiation.
1900 Paul Villard discovers gamma-rays while studying uranium decay
1900 Johannes Rydberg refines the expression for observed hydrogen line wavelengths
1900 Max Planck states his quantum hypothesis and blackbody radiation law
1902 Philipp Lenard observes that maximum photoelectron energies are independent of illuminating intensity but depend on frequency
1902 Theodor Svedberg suggests that fluctuations in molecular bombardment cause the Brownian motion
1906 Charles Barkla discovers that each element has a characteristic X-ray and that the degree of penetration of these X-rays is related to the atomic weight of the element
1917 Albert Einstein introduces the idea of stimulated radiation emission
1918 Ernest Rutherford notices that, when alpha particles were shot into nitrogen gas, his scintillation detectors showed the signatures of hydrogen nuclei.
1922 Arthur Compton studies X-ray photon scattering by electrons demonstrating the 'particle' aspect of electromagnetic radiation.
1922 Otto Stern and Walther Gerlach show "spin quantization"
1923 Lise Meitner discovers what is now referred to as the Auger process
1924 Louis de Broglie suggests that electrons may have wavelike properties in addition to their 'particle' properties; the wave–particle duality has been later extended to all fermions and bosons.
1934 Enrico Fermi publishes a very successful model of beta decay in which neutrinos were produced.
1934 Lev Landau tells Edward Teller that non-linear molecules may have vibrational modes which remove the degeneracy of an orbitally degenerate state (Jahn–Teller effect)
1934 Enrico Fermi suggests bombarding uranium atoms with neutrons to make a 93 proton element
1934 Pavel Cherenkov reports that light is emitted by relativistic particles traveling in a nonscintillating liquid
1942 Enrico Fermi makes the first controlled nuclear chain reaction
1942 Ernst Stueckelberg introduces the propagator to positron theory and interprets positrons as negative energy electrons moving backwards through spacetime
1943 Sin-Itiro Tomonaga publishes his paper on the basic physical principles of quantum electrodynamics
1952 David Bohm propose his interpretation of quantum mechanics
1953 Robert Wilson observes Delbruck scattering of 1.33 MeV gamma-rays by the electric fields of lead nuclei
1953 Charles H. Townes, collaborating with J. P. Gordon, and H. J. Zeiger, builds the first ammonia maser
1954 Chen Ning Yang and Robert Mills investigate a theory of hadronic isospin by demanding local gauge invariance under isotopic spin space rotations, the first non-Abelian gauge theory
1977 Steve Herb finds the upsilon resonance implying the existence of the beauty/bottom quark
1982 Alain Aspect, J. Dalibard, and G. Roger perform a polarization correlation test of Bell's inequality that rules out conspiratorial polarizer communication
2008 The Large Hadron Collider at CERN is scheduled to begin operation in this year. Its primary goal is to search for the Higgs boson, which has not yet been found.
2012 CERN announces the discovery of a new particle with properties consistent with the Higgs boson of the Standard Model after experiments at the Large Hadron Collider.
2003 Leonid Vainerman. Quantum groups, Hopf algebras and quantum field applications.
Noncommutative quantum field theory
M.R. Douglas and N. A. Nekrasov (2001) "Noncommutative field theory," Rev. Mod. Phys. 73: 977–1029.
Szabo, R. J. (2003) "Quantum Field Theory on Noncommutative Spaces," Physics Reports 378: 207–99. An expository article on noncommutative quantum field theories.
Noncommutative quantum field theory, see statistics on arxiv.org
Seiberg, N. and E. Witten (1999) "String Theory and Noncommutative Geometry," Journal of High Energy Physics
Sergio Doplicher, Klaus Fredenhagen and John Roberts, Sergio Doplicher, Klaus Fredenhagen, John E. Roberts (1995) The quantum structure of spacetime at the Planck scale and quantum fields," Commun. Math. Phys. 172: 187–220.
Alain Connes (1994) Noncommutative geometry. Academic Press. ISBN 0-12-185860-X.
-------- (1995) "Noncommutative geometry and reality", J. Math. Phys. 36: 6194.
-------- (1996) "Gravity coupled with matter and the foundation of noncommutative geometry," Comm. Math. Phys. 155: 109.
-------- (2006) "Noncommutative geometry and physics,"
-------- and M. Marcolli, Noncommutative Geometry: Quantum Fields and Motives. American Mathematical Society (2007).
Chamseddine, A., A. Connes (1996) "The spectral action principle," Comm. Math. Phys. 182: 155.
Chamseddine, A., A. Connes, M. Marcolli (2007) "Gravity and the Standard Model with neutrino mixing," Adv. Theor. Math. Phys. 11: 991.
Jureit, Jan-H., Thomas Krajewski, Thomas Schücker, and Christoph A. Stephan (2007) "On the noncommutative standard model," Acta Phys. Polon. B38: 3181–3202.
Schücker, Thomas (2005) Forces from Connes's geometry. Lecture Notes in Physics 659, Springer.