![]() | ||
The Lennard-Jones potential (also termed the L-J potential, 6-12 potential, or 12-6 potential) is a mathematically simple model that approximates the interaction between a pair of neutral atoms or molecules. A form of this interatomic potential was first proposed in 1924 by John Lennard-Jones. The most common expressions of the L-J potential are:
Contents
- Explanation
- Alternative expressions
- AB form
- Truncated and shifted form
- Dimensionless reduced units
- Limits
- References
where ε is the depth of the potential well, σ is the finite distance at which the inter-particle potential is zero, r is the distance between the particles, and rm is the distance at which the potential reaches its minimum. At rm, the potential function has the value −ε. The distances are related as rm = 21/6σ ≈ 1.122σ. These parameters can be fitted to reproduce experimental data or accurate quantum chemistry calculations. Due to its computational simplicity, the Lennard-Jones potential is used extensively in computer simulations even though more accurate potentials exist.
Explanation
The r−12 term, which is the repulsive term, describes Pauli repulsion at short ranges due to overlapping electron orbitals and the r−6 term, which is the attractive long-range term, describes attraction at long ranges (van der Waals force, or dispersion force).
Differentiating the L-J potential with respect to 'r' gives an expression for the net inter-molecular force between 2 molecules. This inter-molecular force may be attractive or repulsive, depending on the value of 'r'. When 'r' is very small, the 2 molecules repel each other.
Whereas the functional form of the attractive term has a clear physical justification, the repulsive term has no theoretical justification. It is used because it approximates the Pauli repulsion well, and is more convenient due to the relative computing efficiency of calculating r12 as the square of r6.
The Lennard-Jones (12,6) potential was improved by the Buckingham potential (exp-6) later proposed by R. A. Buckingham, in which the repulsive part is an exponential function:
The L-J potential is a relatively good approximation. Due to its simplicity, it is often used to describe the properties of gases, and to model dispersion and overlap interactions in molecular models. It is especially accurate for noble gas atoms, and is a good approximation at long and short distances for neutral atoms and molecules.
The lowest energy arrangement of an infinite number of atoms described by a Lennard-Jones potential is a hexagonal close-packing. On raising temperature, the lowest free energy arrangement becomes cubic close packing and then liquid. Under pressure, the lowest energy structure switches between cubic and hexagonal close packing. Real materials include BCC structures also.
Other more recent methods, such as the Stockmayer potential, describe the interaction of molecules more accurately. Quantum chemistry methods, Møller–Plesset perturbation theory, coupled cluster method, or full configuration interaction can give extremely accurate results, but require large computing cost.
Alternative expressions
There are many different ways to formulate the Lennard-Jones potential. Some common forms follow.
AB form
This form is a simplified formulation that is used by some simulation software:
where,
A more mathematical general form, which contains an extra variable, n, is:
where
from where n can be calculated if k is known. Normally the harmonic states are known
where a is the lattice distance and m is the mass of an atom.
Truncated and shifted form
To save computing time and satisfy the minimum image convention, the Lennard-Jones potential is often truncated at a cut-off distance of rc = 2.5σ, where
i.e., at rc = 2.5σ, the Lennard-Jones potential, VLJ, is about 1/60th of its minimum value, ε (the depth of the potential well). Beyond
To avoid a jump discontinuity at
For clarity, let
Then the truncated Lennard-Jones potential
It can be easily verified that VLJtrunc(rc) = 0, thus eliminating the jump discontinuity at r = rc. Although the value of the (unshifted) Lennard Jones potential at r = rc = 2.5σ is rather small, the effect of the truncation can be significant, for instance on the gas–liquid critical point. Fortunately, the potential energy can often be corrected for this effect in a mean field manner by adding so-called tail corrections.
Dimensionless (reduced) units
Dimensionless units can be defined based on the Lennard-Jones potential, which are convenient for molecular dynamics simulations. From a numerical point, the advantages of dimensionless units include computing values which are closer to unity, using simplified equations and being able to easily scale the results.
When the Lennard-Jones potential is used for molecular dynamics simulations, the most convenient dimensionless units are obtained by choosing length σ, mass m and energy ε as the scaling factors for the various physical properties.