Love my family & adore animals! Always try
to have a positive mindset
Oxazole
Updated on
Edit
Like
Comment
Share
Sign in
Formula
C3H3NO
Density
1.05 g/cm³
Molar mass
69.06 g/mol
Thermodynamicdata
Phase behavioursolid–liquid–gas
Oxazole is the parent compound for a vast class of heterocyclic aromatic organic compounds. These are azoles with an oxygen and a nitrogen separated by one carbon. Oxazoles are aromatic compounds but less so than the thiazoles. Oxazole is a weak base; its conjugate acid has a pKa of 0.8, compared to 7 for imidazole.
Oxazolines can also be obtained from cycloisomerization of certain propargyl amides. In one study oxazoles were prepared via a one-pot synthesis consisting of the condensation of propargyl amine and benzoyl chloride to the amide, followed by a Sonogashira coupling of the terminal alkyne end with another equivalent of benzoylchloride, and concluding with p-toluenesulfonic acid catalyzed cycloisomerization:
In one reported oxazole synthesis the reactants are a nitro-substituted benzoyl chloride and an isonitrile:
Biosynthesis
In biomolecules, oxazoles result from the cyclization and oxidation of serine or threonine nonribosomal peptides:
Oxazoles are not as abundant in biomolecules as the related thiazoles with oxygen replaced by a sulfur atom.
Reactions
Deprotonation of oxazoles at C2 is often accompanied by ring-opening to the isonitrile.
Various oxidation reactions. One study reports on the oxidation of 4,5-diphenyloxazole with 3 equivalents of CAN to the corresponding imide and benzoic acid:
In the balanced half-reaction three equivalents of water are consumed for each equivalent of oxazoline, generating 4 protons and 4 electrons (the latter derived from CeIV).