Neha Patil (Editor)

Cultured meat

Updated on
Share on FacebookTweet on TwitterShare on LinkedInShare on Reddit
Process of making burgers from the cow's tissue

Meat analogue, Soylent, Quorn, Textured vegetable protein, Frog legs

Tomorrow s food cultured meat

Cultured meat, also called synthetic meat, cell-cultured meat, clean meat, and in vitro meat, is meat grown in cell culture instead of inside animals. It is a form of cellular agriculture. Cultured meat is produced using many of the same tissue engineering techniques traditionally used in regenerative medicine. Due to technical challenges associated with scaling and cost-reduction, cultured meat has not yet been commercialized. The first cultured beef burger patty, created by Dr. Mark Post at Maastricht University, was eaten at a demonstration for the press in London in August 2013.


Process of Creating Cultured meat


Chart of Cultured Meat poultry, pork, lamb and beef

The theoretical possibility of growing meat in an industrial setting has long captured the public imagination. Winston Churchill suggested in 1931: "We shall escape the absurdity of growing a whole chicken in order to eat the breast or wing, by growing these parts separately under a suitable medium."

Process of how "test-tube" meat is grown

in vitro cultivation of muscular fibers was performed as early as 1971 by Russell Ross. Indeed, the abstract was "Smooth muscle derived from the inner media and intima of immature guinea pig aorta were grown for up to 8 wk in cell culture. The cells maintained the morphology of smooth muscle at all phases of their growth in culture. After growing to confluency, they grew in multiple overlapping layers. By 4 wk in culture, microfibrils (110 A) appeared within the spaces between the layers of cells. Basement membrane-like material also appeared adjacent to the cells. Analysis of the microfibrils showed that they have an amino acid composition similar to that of the microfibrillar protein of the intact elastic fiber. These investigations coupled with the radioautographic observations of the ability of aortic smooth muscle to synthesize and secrete extracellular proteins demonstrate that this cell is a connective tissue synthetic cell." The culturing of stem cells from animals has been possible since the 1990s, including the production of small quantities of tissue which could, in principle be cooked and eaten. NASA has been conducting experiments since 2001, producing cultured meat from turkey cells. The first edible sample was produced by the NSR/Touro Applied BioScience Research Consortium in 2002: goldfish cells grown to resemble fish fillets.

Process of pig to plate

In 1998 Jon F. Vein of the United States filed for, and ultimately secured, a patent (US 6,835,390 B1) for the production of tissue engineered meat for human consumption, wherein muscle and fat cells would be grown in an integrated fashion to create food products such as beef, poultry and fish.

In 2001, dermatologist Wiete Westerhof from the University of Amsterdam, medical doctor Willem van Eelen, and businessman Willem van Kooten announced that they had filed for a worldwide patent on a process to produce cultured meat . In the process, a matrix of collagen is seeded with muscle cells, which are then bathed in a nutritious solution and induced to divide. Scientists in Amsterdam study the culture medium, while the University of Utrecht studies the proliferation of muscle cells, and the Eindhoven University of Technology is researching bioreactors.

In 2003, Oron Catts and Ionat Zurr of the Tissue culture and Art Project and Harvard Medical School exhibited in Nantes a "steak" a few centimetres wide, grown from frog stem cells, which was cooked and eaten.

The first peer-reviewed journal article published on the subject of laboratory-grown meat appeared in a 2005 issue of tissue engineering.

In 2008, PETA offered a $1 million prize to the first company to bring lab-grown chicken meat to consumers by 2012. The Dutch government has put US$4 million into experiments regarding cultured meat . The In Vitro Meat Consortium, a group formed by international researchers interested in the technology, held the first international conference on the production of cultured meat , hosted by the Food Research Institute of Norway in April 2008, to discuss commercial possibilities. Time magazine declared cultured meat production to be one of the 50 breakthrough ideas of 2009. In November 2009, scientists from the Netherlands announced they had managed to grow meat in the laboratory using the cells from a live pig.

As of 2012, 30 laboratories from around the world have announced that they are working on cultured meat research.

First public trial

On August 5, 2013, the world's first lab-grown burger was cooked and eaten at a news conference in London. Scientists from Maastricht University in the Netherlands, led by professor Mark Post, had taken stem cells from a cow and grown them into strips of muscle which they then combined to make a burger. The burger was cooked by chef Richard McGeown of Couch's Great House Restaurant, Polperro, Cornwall, and tasted by critics Hanni Ruetzler, a food researcher from the Future Food Studio and Josh Schonwald. Ruetzler stated,

There is really a bite to it, there is quite some flavour with the browning. I know there is no fat in it so I didn't really know how juicy it would be, but there is quite some intense taste; it's close to meat, it's not that juicy, but the consistency is perfect. This is meat to me... It's really something to bite on and I think the look is quite similar.

Ruetzler added that even in a blind trial she would have taken the product for meat rather than a soya copy.

Tissue for the London demonstration was cultivated in May 2013, using about 20,000 thin strips of cultured muscle tissue. Funding of around €250,000 came from an anonymous donor later revealed to be Sergey Brin. Post remarked that "there’s no reason why it can’t be cheaper...If we can reduce the global herd a millionfold, then I’m happy". Still Post estimates it will probably take at least a decade before the process becomes commercially viable.


The process of developing cultured meat involves taking muscle cells and applying a protein that promotes tissue growth. Once this process has been started, it would be theoretically possible to continue producing meat indefinitely without introducing new cells from a living organism. It has been claimed that, conditions being ideal, two months of cultured meat production could deliver up to 50,000 tons of meat from ten pork muscle cells.

Cultured meat may be produced as strips of muscle fibre, which grow through the fusion of precursor cells – either embryonic stem cells, adult stem cells, or specialized satellite cells found in muscle tissue. This type of meat can be cultured in a bioreactor.

Alternatively, meat could be grown into "real" muscle. However, this would require something akin to a circulatory system, in order to deliver nutrients and oxygen close to the growing cells, as well as to remove the waste products. Other cell types, such as adipocytes, would also need to be grown, and chemical messengers should provide clues to the growing tissue about the structure. Muscle tissue would also need to be physically stretched or "exercised" in order to properly develop.

Cultured meat production requires a preservative, such as sodium benzoate, to protect the growing meat from yeast and fungus. Collagen powder, xanthan gum, mannitol and cochineal could be used in different ways during the process.

The price of cultured meat at retail outlets like grocery stores and supermarkets may decrease to levels that middle-class consumers consider to be "inexpensive" due to technological advancements.


The science for cultured meat is an outgrowth of the field of biotechnology known as tissue engineering. The technology is simultaneously being developed along with other uses for tissue engineering such as helping those with muscular dystrophy and, similarly, growing transplant organs. There are several obstacles to overcome if it has any chance of succeeding; at the moment, the most notable ones are scale and cost.

  • Proliferation of muscle cells: Although it is not very difficult to make stem cells divide, for meat production it is necessary that they divide at a quick pace, producing the solid meat. This requirement has some overlap with the medical branch of tissue engineering.
  • Culture medium: Proliferating cells need a food source to grow and develop. The growth medium should be a well-balanced mixture of ingredients and growth factors. Scientists have already identified possible growth media for turkey, fish, sheep and pig muscle cells. Depending on the motives of the researchers, the growth medium has additional requirements.
  • Commercial: The growth medium should be inexpensive to produce. A plant-based medium may be less expensive than fetal bovine serum.
  • Animal welfare: The growth medium should be devoid of animal sources (except for the initial "mining" of the original stem cells).
  • Non-Allergenic: While plant based growth media are "more realistic," will be cheaper, and reduce possibility of infectious agents, there is also the possibility that plant-based growth media may cause allergic reactions to some consumers.
  • Bioreactors: Nutrients and oxygen need to be delivered close to each growing cell, on the scale of millimeters. In animals this job is handled by blood vessels. A bioreactor should emulate this function in an efficient manner. The usual approach is to create a sponge-like matrix in which the cells can grow and perfuse it with the growth medium.
  • Health

    Large scale production of cultured meat may or may not require artificial growth hormones to be added to the culture for meat production.

    Researchers have suggested that omega-3 fatty acids could be added to cultured meat as a health bonus. In a similar way, the omega-3 fatty acid content of conventional meat can also be increased by altering what the animals are fed. An issue of Time magazine has suggested that the cell-cultured process may also decrease exposure of the meat to bacteria and disease.

    Due to the strictly controlled and predictable environments of both cultured meat farming and vertical farming, it is predicted that there will be reduced exposure to dangerous chemicals like pesticides and fungicides, severe injuries, and wildlife.


    Although cultured meat consists of natural meat cells, consumers may find such a high-tech approach to food production distasteful. Cultured meat has been disparagingly described as 'Frankenmeat'.

    If cultured meat turns out to be different in appearance, taste, smell, texture, or other factors, it may not be commercially competitive with conventionally produced meat. The lack of fat and bone may also be a disadvantage, for these parts make appreciable culinary contributions. However, the lack of bones and/or fat may make many traditional meat preparations, such as buffalo wings, more palatable to small children.


    Research has suggested that environmental impacts of cultured meat would be significantly lower than normally slaughtered beef. For every hectare that is used for vertical farming and/or cultured meat manufacturing, anywhere between 10 and 20 hectares of land may be converted from conventional agriculture usage back into its natural state. Vertical farms (in addition to cultured meat facilities) could exploit methane digesters to generate a small portion of its own electrical needs. Methane digesters could be built on site to transform the organic waste generated at the facility into biogas which is generally composed of 65% methane along with other gasses. This biogas could then be burned to generate electricity for the greenhouse or a series of bioreactors.

    A study by researchers at Oxford and the University of Amsterdam found that cultured meat was "potentially ... much more efficient and environmentally-friendly", generating only 4% greenhouse gas emissions, reducing the energy needs of meat generation by up to 45%, and requiring only 2% of the land that the global meat/livestock industry does. The patent holder Willem van Eelen, the journalist Brendan I. Koerner, and Hanna Tuomisto, a PhD student from Oxford University all believe it has less environmental impact. This is in contrast to cattle farming, "responsible for 18% of greenhouse gases" and causing more damage to the environment than the combined effects of the world's transportation system. Vertical farming may completely eliminate the need to create extra farmland in rural areas along with cultured meat . Their combined role may create a sustainable solution for a cleaner environment.

    One skeptic is Margaret Mellon of the Union of Concerned Scientists, who speculates that the energy and fossil fuel requirements of large scale cultured meat production may be more environmentally destructive than producing food off the land. However, it has been indicated that both vertical farming in urban areas and the activity of cultured meat facilities will cause very little harm to the species of wildlife that live around the facilities. Many natural resources will be spared from depletion due to the conservation efforts made by both vertical farming and cultured meat , making them ideal technologies for an overpopulated world. Conventional farming, on the other hand, kills ten wildlife animals per hectare each year. Converting 4 hectares (10 acres) of farmland from its man-made condition back into either pristine wilderness or grasslands would save approximately 40 animals while converting 1 hectare (2 acres) of that same farmland back into the state it was in prior to settlement by human beings would save approximately 80 animals.

    The role of genetic modification

    Techniques of genetic engineering, such as insertion, deletion, silencing, activation, or mutation of a gene, are not required to produce in-vitro meat. Furthermore, in-vitro meat is composed of a tissue or collection of tissues, not an organism. Therefore, it is not a GMO (Genetically Modified Organism). Since in-vitro meats are simply cells grown in a controlled, artificial environment, some have commented that cultured meat more closely resembles hydroponic vegetables, rather than GMO vegetables.

    More research is being done on in-vitro meat, and although the production of in-vitro meat does not require techniques of genetic engineering, there is discussion among researchers about utilizing such techniques to improve the quality and sustainability of in-vitro meat. Fortifying in-vitro meat with nutrients such as beneficial fatty acids is one improvement that can be facilitated through genetic modification. The same improvement can be made without genetic modification, by manipulating the conditions of the culture medium. Genetic modification may also play a role in the proliferation of muscle cells. The introduction of myogenic regulatory factors, growth factors, or other gene products into muscle cells may increase production past the capacity of conventional meat.

    To avoid the use of any animal products, the use of photosynthetic algae and cyanobacteria has been proposed to produce the main ingredients for the culture media, as opposed to the very commonly used fetal bovine or horse serum. Some researchers suggest that the ability of algae and cyanobacteria to produce ingredients for culture media can be improved with certain technologies, most likely not excluding genetic engineering.

    Ethical considerations

    The Australian bioethicist Julian Savulescu said "Artificial meat stops cruelty to animals, is better for the environment, could be safer and more efficient, and even healthier. We have a moral obligation to support this kind of research. It gets the ethical two thumbs up." Animal welfare groups are generally in favor of the production of cultured meat because it does not have a nervous system and therefore cannot feel pain. Reactions of vegetarians to cultured meat vary: some feel the cultured meat presented to the public in August 2013 was not vegetarian as fetal calf serum was used in the growth medium.

    Independent inquiries may be set up by certain governments to create a degree of standards for cultured meat . Laws and regulations on the proper creation of cultured meat products would have to be modernized to adapt to this newer food product. Some societies may decide to block the creation of cultured meat for the "good of the people" – making its legality in certain countries a questionable matter.

    Cultured meat needs technically sophisticated production methods making it harder for communities to produce food self-sufficiently and potentially increasing dependence on global food corporations.

    Religious considerations

    Jews disagree whether cultured meat is kosher (food that may be consumed, according to Jewish dietary laws). Some Muslim scholars have stated that cultured meat would be allowed by Islamic law if the original cells and growth medium were halal.


    The production of cultured meat is currently very expensive – in 2008 it was about US$1 million for a piece of beef weighing 250 grams (0.55 lb) – and it would take considerable investment to switch to large scale production. However, the In Vitro Meat Consortium has estimated that with improvements to current technology there could be considerable reductions in the cost of cultured meat . They estimate that it could be produced for €3500/tonne (US$5424/tonne in March 2008), which is about twice the cost of unsubsidized conventional European chicken production.

    In a March 2015 interview with Australia's ABC, Mark Post said that the marginal cost of his team's original €250,000 burger was now €8.00. He estimates that technological advancements would allow the product to be cost-competitive to traditionally sourced beef in approximately ten years.

    In fiction

    Cultured meat has often featured in science fiction. The earliest mention may be in Two Planets (original German title: Auf Zwei Planeten) (1897) by Kurd Lasswitz, where "synthetic meat" is one of the varieties of synthetic food introduced on Earth by Martians. Other notable books mentioning artificial meat include Ashes, Ashes (1943) by René Barjavel; The Space Merchants (1952) by Frederik Pohl and C.M. Kornbluth; The Restaurant at the End of the Universe (1980) by Douglas Adams; Neuromancer (1984) by William Gibson; Oryx and Crake (2003) by Margaret Atwood; Deadstock (2007) by Jeffrey Thomas; Ware Tetralogy by Rudy Rucker; and Divergent (2011) by Veronica Roth.

    In film, artificial meat has featured prominently in Giulio Questi's 1968 drama La morte ha fatto l'uovo (Death Laid an Egg) and Claude Zidi's 1976 comedy L'aile ou la cuisse (The Wing or the Thigh). "Man-made" chickens also appear in David Lynch's 1977 surrealist horror, Eraserhead. Most recently, it was also featured prominently as the central theme of the movie Antiviral (2012).

    The Starship Enterprise from the TV and movie franchise Star Trek apparently provides a synthetic meat or cultured meat as a food source for the crew, although crews from The Next Generation and later use replicators.

    In the ABC sitcom Better Off Ted (2009–2010), the episode "Heroes" features Phil (Jonathan Slavin) and Lem (Malcolm Barrett) trying to grow cowless beef.

    Shmeat was a subject on an episode of the Colbert Report on 17 March 2009.

    In February, 2014, a biotech startup called BiteLabs ran a campaign to generate popular support for artisanal salami made with meat cultured from celebrity tissue samples. The campaign became viral on Twitter, where users tweeted at celebrities asking them to donate muscle cells to the project. Media reactions to BiteLabs variously identified the startup as a satire on startup culture, celebrity culture, or as a discussion prompt on bioethical concerns. While BiteLabs claimed to be inspired by the success of Sergey Brin's burger, the company is seen as an example of critical design rather than an actual business venture.

    In late 2016, shmeat was involved in a case for the fictional detective, Sherlock Holmes, in the episode How The Sausage Is Made - s5e8 of CBS show Elementary (TV series).

    Nomenclature discussion

    "Clean meat" is an alternative term for "cultured meat" that is preferred by some advocates and companies that support the technology, including The Good Food Institute, because it better reflects the production and benefits of the meat. Clean meat won't be grown in Petri dishes; it would be more accurate to think of the production as "meat breweries." The first public advocacy of the term "clean meat" seems to date back to a New York Times letter to the Editor in 2008.


    Cultured meat Wikipedia