Puneet Varma (Editor)

Astrophysical X ray source

Updated on
Edit
Like
Comment
Share on FacebookTweet on TwitterShare on LinkedInShare on Reddit
Astrophysical X-ray source

Astrophysical X-ray sources are astronomical objects with physical properties which result in the emission of X-rays.

Contents

There are a number of types of astrophysical objects which emit X-rays, from galaxy clusters, through black holes in active galactic nuclei (AGN) to galactic objects such as supernova remnants, stars, and binary stars containing a white dwarf (cataclysmic variable stars and super soft X-ray sources), neutron star or black hole (X-ray binaries). Some solar system bodies emit X-rays, the most notable being the Moon, although most of the X-ray brightness of the Moon arises from reflected solar X-rays. A combination of many unresolved X-ray sources is thought to produce the observed X-ray background. The X-ray continuum can arise from bremsstrahlung, either magnetic or ordinary Coulomb, black-body radiation, synchrotron radiation, inverse Compton scattering of lower-energy photons by relativistic electrons, knock-on collisions of fast protons with atomic electrons, and atomic recombination, with or without additional electron transitions.

Furthermore, celestial entities in space are discussed as celestial X-ray sources. The origin of all observed astronomical X-ray sources is in, near to, or associated with a coronal cloud or gas at coronal cloud temperatures for however long or brief a period.

Galaxy clusters

Clusters of galaxies are formed by the merger of smaller units of matter, such as galaxy groups or individual galaxies. The infalling material (which contains galaxies, gas and dark matter) gains kinetic energy as it falls into the cluster's gravitational potential well. The infalling gas collides with gas already in the cluster and is shock heated to between 107 and 108 K depending on the size of the cluster. This very hot gas emits X-rays by thermal bremsstrahlung emission, and line emission from metals (in astronomy, 'metals' often means all elements except hydrogen and helium). The galaxies and dark matter are collisionless and quickly become virialised, orbiting in the cluster potential well.

At a statistical significance of 8σ, it was found that the spatial offset of the center of the total mass from the center of the baryonic mass peaks cannot be explained with an alteration of the gravitational force law.

Quasars

A quasi-stellar radio source (quasar) is a very energetic and distant galaxy with an active galactic nucleus (AGN). QSO 0836+7107 is a Quasi-Stellar Object (QSO) that emits baffling amounts of radio energy. This radio emission is caused by electrons spiraling (thus accelerating) along magnetic fields producing cyclotron or synchrotron radiation. These electrons can also interact with visible light emitted by the disk around the AGN or the black hole at its center. These photons accelerate the electrons, which then emit X- and gamma-radiation via Compton and inverse Compton scattering.

On board the Compton Gamma Ray Observatory (CGRO) is the Burst and Transient Source Experiment (BATSE) which detects in the 20 keV to 8 MeV range. QSO 0836+7107 or 4C 71.07 was detected by BATSE as a source of soft gamma rays and hard X-rays. "What BATSE has discovered is that it can be a soft gamma-ray source", McCollough said. QSO 0836+7107 is the faintest and most distant object to be observed in soft gamma rays. It has already been observed in gamma rays by the Energetic Gamma Ray Experiment Telescope (EGRET) also aboard the Compton Gamma Ray Observatory.

Seyfert galaxies

Seyfert galaxies are a class of galaxies with nuclei that produce spectral line emission from highly ionized gas. They are a subclass of active galactic nuclei (AGN), and are thought to contain supermassive black holes.

X-ray bright galaxies

The following early-type galaxies (NGCs) have been observed to be X-ray bright due to hot gaseous coronae: 315, 1316, 1332, 1395, 2563, 4374, 4382, 4406, 4472, 4594, 4636, 4649, and 5128. The X-ray emission can be explained as thermal bremsstrahlung from hot gas (0.5-1.5 keV).

Black holes

Black holes give off radiation because matter falling into them loses gravitational energy which may result in the emission of radiation before the matter falls into the event horizon. The infalling matter has angular momentum, which means that the material cannot fall in directly, but spins around the black hole. This material often forms an accretion disk. Similar luminous accretion disks can also form around white dwarfs and neutron stars, but in these the infalling gas releases additional energy as it slams against the high-density surface with high speed. In case of a neutron star, the infall speed can be a sizeable fraction of the speed of light.

In some neutron star or white dwarf systems, the magnetic field of the star is strong enough to prevent the formation of an accretion disc. The material in the disc gets very hot because of friction, and emits X-rays. The material in the disc slowly loses its angular momentum and falls into the compact star. In neutron stars and white dwarfs, additional X-rays are generated when the material hits their surfaces. X-ray emission from black holes is variable, varying in luminosity in very short timescales. The variation in luminosity can provide information about the size of the black hole.

Supernova remnants (SNR)

A Type Ia supernova is an explosion of a white dwarf in orbit around either another white dwarf or a red giant star. The dense white dwarf can accumulate gas donated from the companion. When the dwarf reaches the critical mass of 1.4 M, a thermonuclear explosion ensues. As each Type Ia shines with a known luminosity, Type Ia are called "standard candles" and are used by astronomers to measure distances in the universe.

SN 2005ke is the first Type Ia supernova detected in X-ray wavelengths, and it is much brighter in the ultraviolet than expected.

Vela X-1

Vela X-1 is a pulsing, eclipsing high-mass X-ray binary (HMXB) system, associated with the Uhuru source 4U 0900-40 and the supergiant star HD 77581. The X-ray emission of the neutron star is caused by the capture and accretion of matter from the stellar wind of the supergiant companion. Vela X-1 is the prototypical detached HMXB.

Hercules X-1

An intermediate-mass X-ray binary (IMXB) is a binary star system where one of the components is a neutron star or a black hole. The other component is an intermediate mass star.

Hercules X-1 is composed of a neutron star accreting matter from a normal star (HZ Her) probably due to Roche lobe overflow. X-1 is the prototype for the massive X-ray binaries although it falls on the borderline, ~2 M, between high- and low-mass X-ray binaries.

Scorpius X-1

The first extrasolar X-ray source was discovered on June 12, 1962. This source is called Scorpius X-1, the first X-ray source found in the constellation of Scorpius, located in the direction of the center of the Milky Way. Scorpius X-1 is some 9,000 ly from Earth and after the Sun is the strongest X-ray source in the sky at energies below 20 keV. Its X-ray output is 2.3 × 1031 W, about 60,000 times the total luminosity of the Sun. Scorpius X-1 itself is a neutron star. This system is classified as a low-mass X-ray binary (LMXB); the neutron star is roughly 1.4 solar masses, while the donor star is only 0.42 solar masses.

Sun

In the late 1930s, the presence of a very hot, tenuous gas surrounding the Sun was inferred indirectly from optical coronal lines of highly ionized species. In the mid-1940s radio observations revealed a radio corona around the Sun. After detecting X-ray photons from the Sun in the course of a rocket flight, T. Burnight wrote, "The sun is assumed to be the source of this radiation although radiation of wavelength shorter than 4 Å would not be expected from theoretical estimates of black body radiation from the solar corona." And, of course, people have seen the solar corona in scattered visible light during solar eclipses.

While neutron stars and black holes are the quintessential point sources of X-rays, all main sequence stars are likely to have hot enough coronae to emit X-rays. A- or F-type stars have at most thin convection zones and thus produce little coronal activity.

Similar solar cycle-related variations are observed in the flux of solar X-ray and UV or EUV radiation. Rotation is one of the primary determinants of the magnetic dynamo, but this point could not be demonstrated by observing the Sun: the Sun's magnetic activity is in fact strongly modulated (due to the 11-year magnetic spot cycle), but this effect is not directly dependent on the rotation period.

Solar flares usually follow the solar cycle. CORONAS-F was launched on July 31, 2001 to coincide with the 23rd solar cycle maximum. The solar flare of October 29, 2003 apparently showed a significant degree of linear polarization (> 70% in channels E2 = 40-60 keV and E3 = 60-100 keV, but only about 50% in E1 = 20-40 keV) in hard X-rays, but other observations have generally only set upper limits.

Coronal loops form the basic structure of the lower corona and transition region of the Sun. These highly structured and elegant loops are a direct consequence of the twisted solar magnetic flux within the solar body. The population of coronal loops can be directly linked with the solar cycle, it is for this reason coronal loops are often found with sunspots at their footpoints. Coronal loops populate both active and quiet regions of the solar surface. The Yohkoh Soft X-ray Telescope (SXT) observed X-rays in the 0.25-4.0 keV range, resolving solar features to 2.5 arc seconds with a temporal resolution of 0.5–2 seconds. SXT was sensitive to plasma in the 2-4 MK temperature range, making it an ideal observational platform to compare with data collected from TRACE coronal loops radiating in the EUV wavelengths.

Variations of solar-flare emission in soft X-rays (10-130 nm) and EUV (26-34 nm) recorded on board CORONAS-F demonstrate for most flares observed by CORONAS-F in 2001–2003 UV radiation preceded X-ray emission by 1-10 min.

White dwarfs

When the core of a medium mass star contracts, it causes a release of energy that makes the envelope of the star expand. This continues until the star finally blows its outer layers off. The core of the star remains intact and becomes a white dwarf. The white dwarf is surrounded by an expanding shell of gas in an object known as a planetary nebula. Planetary nebulae seem to mark the transition of a medium mass star from red giant to white dwarf. X-ray images reveal clouds of multimillion degree gas that have been compressed and heated by the fast stellar wind. Eventually the central star collapses to form a white dwarf. For a billion or so years after a star collapses to form a white dwarf, it is "white" hot with surface temperatures of ~20,000 K.

X-ray emission has been detected from PG 1658+441, a hot, isolated, magnetic white dwarf, first detected in an Einstein IPC observation and later identified in an Exosat channel multiplier array observation. "The broad-band spectrum of this DA white dwarf can be explained as emission from a homogeneous, high-gravity, pure hydrogen atmosphere with a temperature near 28,000 K." These observations of PG 1658+441 support a correlation between temperature and helium abundance in white dwarf atmospheres.

A super soft X-ray source (SSXS) radiates soft X-rays in the range of 0.09 to 2.5 keV. Super soft X-rays are believed to be produced by steady nuclear fusion on a white dwarf's surface of material pulled from a binary companion. This requires a flow of material sufficiently high to sustain the fusion.

Real mass transfer variations may be occurring in V Sge similar to SSXS RX J0513.9-6951 as revealed by analysis of the activity of the SSXS V Sge where episodes of long low states occur in a cycle of ~400 days.

RX J0648.0-4418 is an X-ray pulsator in the Crab nebula. HD 49798 is a subdwarf star that forms a binary system with RX J0648.0-4418. The subdwarf star is a bright object in the optical and UV bands. The orbital period of the system is accurately known. Recent XMM-Newton observations timed to coincide with the expected eclipse of the X-ray source allowed an accurate determination of the mass of the X-ray source (at least 1.2 solar masses), establishing the X-ray source as a rare, ultra-massive white dwarf.

Brown dwarfs

According to theory, an object that has a mass of less than about 8% of the mass of the Sun cannot sustain significant nuclear fusion in its core. This marks the dividing line between red dwarf stars and brown dwarfs. The dividing line between planets and brown dwarfs occurs with objects that have masses below about 1% of the mass of the Sun, or 10 times the mass of Jupiter. These objects cannot fuse deuterium.

LP 944-20

With no strong central nuclear energy source, the interior of a brown dwarf is in a rapid boiling, or convective state. When combined with the rapid rotation that most brown dwarfs exhibit, convection sets up conditions for the development of a strong, tangled magnetic field near the surface. The flare observed by Chandra from LP 944-20 could have its origin in the turbulent magnetized hot material beneath the brown dwarf's surface. A sub-surface flare could conduct heat to the atmosphere, allowing electric currents to flow and produce an X-ray flare, like a stroke of lightning. The absence of X-rays from LP 944-20 during the non flaring period is also a significant result. It sets the lowest observational limit on steady X-ray power produced by a brown dwarf star, and shows that coronas cease to exist as the surface temperature of a brown dwarf cools below about 2500 °C and becomes electrically neutral.

TWA 5B

Using NASA's Chandra X-ray Observatory, scientists have detected X-rays from a low mass brown dwarf in a multiple star system. This is the first time that a brown dwarf this close to its parent star(s) (Sun-like stars TWA 5A) has been resolved in X-rays. "Our Chandra data show that the X-rays originate from the brown dwarf's coronal plasma which is some 3 million degrees Celsius", said Yohko Tsuboi of Chuo University in Tokyo. "This brown dwarf is as bright as the Sun today in X-ray light, while it is fifty times less massive than the Sun", said Tsuboi. "This observation, thus, raises the possibility that even massive planets might emit X-rays by themselves during their youth!"

X-ray reflection

Electric potentials of about 10 million volts, and currents of 10 million amps – a hundred times greater than the most powerful lightning bolts – are required to explain the auroras at Jupiter's poles, which are a thousand times more powerful than those on Earth.

On Earth, auroras are triggered by solar storms of energetic particles, which disturb Earth's magnetic field. As shown by the swept-back appearance in the illustration, gusts of particles from the Sun also distort Jupiter's magnetic field, and on occasion produce auroras.

Saturn's X-ray spectrum is similar to that of X-rays from the Sun indicating that Saturn's X-radiation is due to the reflection of solar X-rays by Saturn's atmosphere. The optical image is much brighter, and shows the beautiful ring structures, which were not detected in X-rays.

X-ray fluorescence

Some of the detected X-rays, originating from solar system bodies other than the Sun, are produced by fluorescence. Scattered solar X-rays provide an additional component.

In the Röntgensatellit (ROSAT) image of the Moon, pixel brightness corresponds to X-ray intensity. The bright lunar hemisphere shines in X-rays because it re-emits X-rays originating from the sun. The background sky has an X-ray glow in part due to the myriad of distant, powerful active galaxies, unresolved in the ROSAT picture. The dark side of the Moon's disk shadows this X-ray background radiation coming from the deep space. A few X-rays only seem to come from the shadowed lunar hemisphere. Instead, they originate in Earth's geocorona or extended atmosphere which surrounds the orbiting X-ray observatory. The measured lunar X-ray luminosity of ~1.2 × 105 W makes the Moon one of the weakest known non-terrestrial X-ray source.

Comet detection

NASA's Swift Gamma-Ray Burst Mission satellite was monitoring Comet Lulin as it closed to 63 Gm of Earth. For the first time, astronomers can see simultaneous UV and X-ray images of a comet. "The solar wind -- a fast-moving stream of particles from the sun -- interacts with the comet's broader cloud of atoms. This causes the solar wind to light up with X-rays, and that's what Swift's XRT sees", said Stefan Immler, of the Goddard Space Flight Center. This interaction, called charge exchange, results in X-rays from most comets when they pass within about three times Earth's distance from the sun. Because Lulin is so active, its atomic cloud is especially dense. As a result, the X-ray-emitting region extends far sunward of the comet.

X-ray dark stars

During the solar cycle, as shown in the sequence of images of the Sun in X-rays, the Sun is almost X-ray dark, almost an X-ray variable. Betelgeuse, on the other hand, appears to be always X-ray dark. The X-ray flux from the entire stellar surface corresponds to a surface flux limit that ranges from 30-7000 ergs s−1 cm−2 at T=1 MK, to ~1 erg s−1 cm−2 at higher temperatures, five orders of magnitude below the quiet Sun X-ray surface flux.

Like the red supergiant Betelgeuse, hardly any X-rays are emitted by red giants. The cause of the X-ray deficiency may involve

  • a turn-off of the dynamo,
  • a suppression by competing wind production, or
  • strong attenuation by an overlying thick chromosphere.
  • Prominent bright red giants include Aldebaran, Arcturus, and Gamma Crucis. There is an apparent X-ray "dividing line" in the H-R diagram among the giant stars as they cross from the main sequence to become red giants. Alpha Trianguli Australis (α TrA / α Trianguli Australis) appears to be a Hybrid star (parts of both sides) in the "Dividing Line" of evolutionary transition to red giant. α TrA can serve to test the several Dividing Line models.

    There is also a rather abrupt onset of X-ray emission around spectral type A7-F0, with a large range of luminosities developing across spectral class F.

    In the few genuine late A- or early F-type coronal emitters, their weak dynamo operation is generally not able to brake the rapidly spinning star considerably during their short lifetime so that these coronae are conspicuous by their severe deficit of X-ray emission compared to chromospheric and transition region fluxes; the latter can be followed up to mid-A type stars at quite high levels. Whether or not these atmospheres are indeed heated acoustically and drive an "expanding", weak and cool corona or whether they are heated magnetically, the X-ray deficit and the low coronal temperatures clearly attest to the inability of these stars to maintain substantial, hot coronae in any way comparable to cooler active stars, their appreciable chromospheres notwithstanding.

    X-ray interstellar medium

    The Hot Ionized Medium (HIM), sometimes consisting of coronal gas, in the temperature range 106 – 107 K emits X-rays. Stellar winds from young clusters of stars (often with giant or supergiant HII regions surrounding them) and shock waves created by supernovae inject enormous amounts of energy into their surroundings, which leads to hypersonic turbulence. The resultant structures – of varying sizes – can be observed, such as stellar wind bubbles and superbubbles of hot gas, by X-ray satellite telescopes. The Sun is currently traveling through the Local Interstellar Cloud, a denser region in the low-density Local Bubble.

    Diffuse X-ray background

    In addition to discrete sources which stand out against the sky, there is good evidence for a diffuse X-ray background. During more than a decade of observations of X-ray emission from the Sun, evidence of the existence of an isotropic X-ray background flux was obtained in 1956. This background flux is rather consistently observed over a wide range of energies. The early high-energy end of the spectrum for this diffuse X-ray background was obtained by instruments on board Ranger 3 and Ranger 5. The X-ray flux corresponds to a total energy density of about 5 x 10−4 eV/cm3. The ROSAT soft X-ray diffuse background (SXRB) image shows the general increase in intensity from the Galactic plane to the poles. At the lowest energies, 0.1 – 0.3 keV, nearly all of the observed soft X-ray background (SXRB) is thermal emission from ~106 K plasma.

    By comparing the soft X-ray background with the distribution of neutral hydrogen, it is generally agreed that within the Milky Way disk, super soft X-rays are absorbed by this neutral hydrogen.

    X-ray dark planets

    X-ray observations offer the possibility to detect (X-ray dark) planets as they eclipse part of the corona of their parent star while in transit. "Such methods are particularly promising for low-mass stars as a Jupiter-like planet could eclipse a rather significant coronal area."

    Earth

    The first picture of the Earth in X-rays was taken in March 1996, with the orbiting Polar satellite. Energetically charged particles from the Sun cause aurora and energize electrons in the Earth's magnetosphere. These electrons move along the Earth's magnetic field and eventually strike the Earth's ionosphere, producing the X-ray emission.

    References

    Astrophysical X-ray source Wikipedia