![]() | ||
In computer science and operations research, the ant colony optimization algorithm (ACO) is a probabilistic technique for solving computational problems which can be reduced to finding good paths through graphs.
Contents
- Overview
- Common extensions
- Elitist ant system
- Max min ant system MMAS
- Ant colony system
- Rank based ant system ASrank
- Continuous orthogonal ant colony COAC
- Recursive ant colony optimization
- Convergence
- Edge selection
- Pheromone update
- Applications
- Scheduling problem
- Vehicle routing problem
- Assignment problem
- Set problem
- Device sizing problem in nanoelectronics physical design
- Image processing
- Others
- Definition difficulty
- Stigmergy algorithms
- Related methods
- History
- Publications selected
- References
This algorithm is a member of the ant colony algorithms family, in swarm intelligence methods, and it constitutes some metaheuristic optimizations. Initially proposed by Marco Dorigo in 1992 in his PhD thesis, the first algorithm was aiming to search for an optimal path in a graph, based on the behavior of ants seeking a path between their colony and a source of food. The original idea has since diversified to solve a wider class of numerical problems, and as a result, several problems have emerged, drawing on various aspects of the behavior of ants. From a broader perspective, ACO performs a model-based search and share some similarities with Estimation of Distribution Algorithms.
Overview
In the natural world, ants of some species (initially) wander randomly, and upon finding food return to their colony while laying down pheromone trails. If other ants find such a path, they are likely not to keep travelling at random, but instead to follow the trail, returning and reinforcing it if they eventually find food (see Ant communication).
Over time, however, the pheromone trail starts to evaporate, thus reducing its attractive strength. The more time it takes for an ant to travel down the path and back again, the more time the pheromones have to evaporate. A short path, by comparison, gets marched over more frequently, and thus the pheromone density becomes higher on shorter paths than longer ones. Pheromone evaporation also has the advantage of avoiding the convergence to a locally optimal solution. If there were no evaporation at all, the paths chosen by the first ants would tend to be excessively attractive to the following ones. In that case, the exploration of the solution space would be constrained. The influence of pheromone evaporation in real ant systems is unclear, but it is very important in artificial systems.
The overall result is that when one ant finds a good (i.e., short) path from the colony to a food source, other ants are more likely to follow that path, and positive feedback eventually leads to all the ants following a single path. The idea of the ant colony algorithm is to mimic this behavior with "simulated ants" walking around the graph representing the problem to solve.
Common extensions
Here are some of the most popular variations of ACO algorithms.
Elitist ant system
The global best solution deposits pheromone on every iteration along with all the other ants.
Max-min ant system (MMAS)
Added maximum and minimum pheromone amounts [τmax,τmin]. Only global best or iteration best tour deposited pheromone <MAZ>. All edges are initialized to τmin and reinitialized to τmax when nearing stagnation.
Ant colony system
It has been presented above.
Rank-based ant system (ASrank)
All solutions are ranked according to their length. The amount of pheromone deposited is then weighted for each solution, such that solutions with shorter paths deposit more pheromone than the solutions with longer paths.
Continuous orthogonal ant colony (COAC)
The pheromone deposit mechanism of COAC is to enable ants to search for solutions collaboratively and effectively. By using an orthogonal design method, ants in the feasible domain can explore their chosen regions rapidly and efficiently, with enhanced global search capability and accuracy.
The orthogonal design method and the adaptive radius adjustment method can also be extended to other optimization algorithms for delivering wider advantages in solving practical problems.
Recursive ant colony optimization
It is a recursive form of ant system which divides the whole search domain into several sub-domains and solves the objective on these subdomains. The results from all the subdomains are compared and the best few of them are promoted for the next level. The subdomains corresponding to the selected results are further subdivided and the process is repeated until an output of desired precision is obtained. This method has been tested on ill-posed geophysical inversion problems and works well.
Convergence
For some versions of the algorithm, it is possible to prove that it is convergent (i.e., it is able to find the global optimum in finite time). The first evidence of a convergence ant colony algorithm was made in 2000, the graph-based ant system algorithm, and then algorithms for ACS and MMAS. Like most metaheuristics, it is very difficult to estimate the theoretical speed of convergence. In 2004, Zlochin and his colleagues showed that COA-type algorithms could be assimilated methods of stochastic gradient descent, on the cross-entropy and estimation of distribution algorithm. They proposed these metaheuristics as a "research-based model". A performance analysis of continuous ant colony algorithm based on its various parameter suggest its sensitivity of convergence on parameter tuning.
Edge selection
An ant is a simple computational agent in the ant colony optimization algorithm. It iteratively constructs a solution for the problem at hand. The intermediate solutions are referred to as solution states. At each iteration of the algorithm, each ant moves from a state
The trail level represents a posteriori indication of the desirability of that move. Trails are updated usually when all ants have completed their solution, increasing or decreasing the level of trails corresponding to moves that were part of "good" or "bad" solutions, respectively.
In general, the
where
Pheromone update
When all the ants have completed a solution, the trails are updated by
where
where
Applications
Ant colony optimization algorithms have been applied to many combinatorial optimization problems, ranging from quadratic assignment to protein folding or routing vehicles and a lot of derived methods have been adapted to dynamic problems in real variables, stochastic problems, multi-targets and parallel implementations. It has also been used to produce near-optimal solutions to the travelling salesman problem. They have an advantage over simulated annealing and genetic algorithm approaches of similar problems when the graph may change dynamically; the ant colony algorithm can be run continuously and adapt to changes in real time. This is of interest in network routing and urban transportation systems.
The first ACO algorithm was called the ant system and it was aimed to solve the travelling salesman problem, in which the goal is to find the shortest round-trip to link a series of cities. The general algorithm is relatively simple and based on a set of ants, each making one of the possible round-trips along the cities. At each stage, the ant chooses to move from one city to another according to some rules:
- It must visit each city exactly once;
- A distant city has less chance of being chosen (the visibility);
- The more intense the pheromone trail laid out on an edge between two cities, the greater the probability that that edge will be chosen;
- Having completed its journey, the ant deposits more pheromones on all edges it traversed, if the journey is short;
- After each iteration, trails of pheromones evaporate.
Scheduling problem
Vehicle routing problem
Assignment problem
Set problem
Device sizing problem in nanoelectronics physical design
Image processing
ACO algorithm is used in image processing for image edge detection and edge linking.
The graph here is the 2-D image and the ants traverse from one pixel depositing pheromone.The movement of ants from one pixel to another is directed by the local variation of the image's intensity values. This movement causes the highest density of the pheromone to be deposited at the edges.
The following are the steps involved in edge detection using ACO:
Step1: Initialization:
Randomly place
There are various methods to determine the heuristic matrix. For the below example the heuristic matrix was calculated based on the local statistics: the local statistics at the pixel position (i,j).
Where
The parameter
Step 2 Construction process:
The ant's movement is based on 4-connected pixels or 8-connected pixels. The probability with which the ant moves is given by the probability equation
Step 3 and Step 5 Update process:
The pheromone matrix is updated twice. in step 3 the trail of the ant (given by
Step 7 Decision Process:
Once the K ants have moved a fixed distance L for N iteration, the decision whether it is an edge or not is based on the threshold T on the pheromone matrixτ. Threshold for the below example is calculated based on Otsu's method.
Image Edge detected using ACO:
The above images are generated using different functions given by the equation (1) to (4).
ACO has also been proven effective in edge linking algorithms too.
Others
Definition difficulty
With an ACO algorithm, the shortest path in a graph, between two points A and B, is built from a combination of several paths. It is not easy to give a precise definition of what algorithm is or is not an ant colony, because the definition may vary according to the authors and uses. Broadly speaking, ant colony algorithms are regarded as populated metaheuristics with each solution represented by an ant moving in the search space. Ants mark the best solutions and take account of previous markings to optimize their search. They can be seen as probabilistic multi-agent algorithms using a probability distribution to make the transition between each iteration. In their versions for combinatorial problems, they use an iterative construction of solutions. According to some authors, the thing which distinguishes ACO algorithms from other relatives (such as algorithms to estimate the distribution or particle swarm optimization) is precisely their constructive aspect. In combinatorial problems, it is possible that the best solution eventually be found, even though no ant would prove effective. Thus, in the example of the Travelling salesman problem, it is not necessary that an ant actually travels the shortest route: the shortest route can be built from the strongest segments of the best solutions. However, this definition can be problematic in the case of problems in real variables, where no structure of 'neighbours' exists. The collective behaviour of social insects remains a source of inspiration for researchers. The wide variety of algorithms (for optimization or not) seeking self-organization in biological systems has led to the concept of "swarm intelligence", which is a very general framework in which ant colony algorithms fit.
Stigmergy algorithms
There is in practice a large number of algorithms claiming to be "ant colonies", without always sharing the general framework of optimization by canonical ant colonies (COA). In practice, the use of an exchange of information between ants via the environment (a principle called "stigmergy") is deemed enough for an algorithm to belong to the class of ant colony algorithms. This principle has led some authors to create the term "value" to organize methods and behavior based on search of food, sorting larvae, division of labour and cooperative transportation.
Related methods
History
Chronology of ant colony optimization algorithms.