Rahul Sharma (Editor)

Androsterone

Updated on
Edit
Like
Comment
Share on FacebookTweet on TwitterShare on LinkedInShare on Reddit
ATC code
  
none

PubChem CID
  
5879

UNII
  
C24W7J5D5R

Formula
  
C19H30O2

CAS Number
  
53-41-8

ChemSpider
  
5668

ChEBI
  
CHEBI:16032

Molar mass
  
290.4403 g/mol

Androsterone httpsuploadwikimediaorgwikipediacommonsthu

Androsterone, or 5α-androstan-3α-ol-17-one, is an endogenous steroid hormone, neurosteroid, and putative pheromone. It is a weak androgen with a potency that is approximately 1/7th that of testosterone. Androsterone is a metabolite of testosterone and dihydrotestosterone (DHT). In addition, it can be converted back into DHT via 3α-hydroxysteroid dehydrogenase and 17β-hydroxysteroid dehydrogenase, bypassing conventional intermediates such as androstenedione and testosterone, and as such, can be considered to be a metabolic intermediate in its own right. Androsterone is also known to be an inhibitory androstane neurosteroid, acting as a positive allosteric modulator of the GABAA receptor, and possesses anticonvulsant effects. The unnatural enantiomer of androsterone is more potent as a positive allosteric modulator of GABAA receptors and as an anticonvulsant than the natural form. Androsterone's 3β-isomer is epiandrosterone, and its 5β-epimer is etiocholanolone. The 3β,5β-isomer is epietiocholanolone.

Contents

History

It was first isolated in 1931, by Adolf Friedrich Johann Butenandt and Kurt Tscherning. They distilled over 17,000 liters (3,700 imp gal; 4,500 U.S. gal) of male urine, from which they got 50 milligrams (0.77 gr) of crystalline androsterone, which was sufficient to find that the chemical formula was very similar to estrone.

Biological role

Androsterone is generally considered to be an inactive metabolite of testosterone, which when conjugated by glucuronidation and sulfation allows testosterone to be removed from the body, but it is a weak neurosteroid that can cross into the brain and could have effects on brain function.

Pheromone

Androsterone is found in the human axilla and skin as well as in the urine. It may also be secreted by human sebaceous glands. It is described as having a musky odor similar to that of androstenol. Androsterone has been found to affect human behavior when smelled.

Biosynthesis

Androsterone and its 5β-isomer, etiocholanolone, are produced in the body as metabolites of testosterone. Testosterone is converted to 5α-dihydrotestosterone and 5β-dihydrotestosterone by 5α-reductase and 5β-reductase, respectively. The enzyme 3α-hydroxysteroid dehydrogenase converts the reduced forms to 5α-androstanediol and 5β-androstanediol, which are subsequently converted by 17β-hydroxysteroid dehydrogenase to androsterone and etiocholanolone, respectively. Androsterone and etiocholanolone can also be formed from androstenedione via the action of 5α-reductase and 5β-reductase forming 5α-androstanedione and 5β-androstanedione which are then converted to androsterone and etiocholanolone by 3α-hydroxysteroid dehydrogenase and 3β-hydroxysteroid dehydrogenase, respectively.

References

Androsterone Wikipedia