Nisha Rathode (Editor)

William Whewell

Updated on
Edit
Like
Comment
Share on FacebookTweet on TwitterShare on LinkedInShare on Reddit
Residence
  
Died
  
March 6, 1866, Cambridge

Role
  
Name
  
William Whewell

Nationality
  

William Whewell William Whewell Quotes 16 Science Quotes Dictionary of

Born
  
24 May 1794Lancaster, Lancashire, England (
1794-05-24
)

Fields
  
Polymath, philosopher, theologian

Institutions
  
University of Cambridge

Alma mater
  
University of Cambridge

Known for
  
Coining the words 'scientist' and 'physicist'

Spouse
  
Cordelia Marshall (m. 1841)

Education
  
Trinity College, Cambridge, University of Cambridge

Books
  
The philosophy of the ind, The plurality of worlds, The elements of morality: i, Astronomy and General, Theory of scientific method

Similar People
  
John Herschel, Charles Lyell, Augustus De Morgan, Adam Sedgwick, George Peacock

William whewell quotes


William Whewell ( ; 24 May 1794 – 6 March 1866) was an English polymath, scientist, Anglican priest, philosopher, theologian, and historian of science. He was Master of Trinity College, Cambridge. In his time as a student there, he achieved distinction in both poetry and mathematics.

Contents

William Whewell wwwvictorianweborgscienceportraitswhewelljpg

What is most often remarked about Whewell is the breadth of his endeavours. In a time of increasing specialisation, Whewell appears as a vestige of an earlier era when natural philosophers dabbled in a bit of everything. He researched ocean tides (for which he won the Royal Medal), published work in the disciplines of mechanics, physics, geology, astronomy, and economics, while also finding the time to compose poetry, author a Bridgewater Treatise, translate the works of Goethe, and write sermons and theological tracts. In mathematics, Whewell introduced what is now called the Whewell equation, an equation defining the shape of a curve without reference to an arbitrarily chosen coordinate system.

William Whewell William Whewell Biography William Whewell39s Famous Quotes

One of Whewell's greatest gifts to science was his wordsmithing. He often corresponded with many in his field and helped them come up with new terms for their discoveries. Whewell contributed the terms scientist, physicist, linguistics, consilience, catastrophism, and uniformitarianism, amongst others; Whewell suggested the terms ion, dielectric, anode, and cathode to Michael Faraday.

William Whewell FilePSM V07 D008 William Whewelljpg Wikimedia Commons

Whewell died in Cambridge in 1866 as a result of a fall from his horse.

William Whewell


Life and career

Whewell was born in Lancaster. His father, a carpenter, wished him to follow his trade, but his success in mathematics at Lancaster and Heversham grammar schools won him an exhibition (a type of scholarship) at Trinity College, Cambridge (1812). In 1814 he was awarded the Chancellor's Gold Medal for poetry. He was Second Wrangler in 1816, President of the Cambridge Union Society in 1817, became fellow and tutor of his college, and, in 1841, succeeded Christopher Wordsworth as master. He was professor of mineralogy from 1828 to 1832 and Knightbridge Professor of Philosophy (then called "moral theology and casuistical divinity") from 1838 to 1855.

Whewell died in Cambridge in 1866 as a result of a fall from his horse. He is buried in the Mill Road cemetery, Cambridge, together with his first and second wives: Cordelia Whewell and Everina Frances, Lady Affleck.

Tracing the history and development of science

For all these pursuits, it comes as no surprise that his best-known works are two voluminous books which attempt to map and systematize the development of the sciences, History of the Inductive Sciences (1837) and The Philosophy of the Inductive Sciences, Founded Upon Their History (1840). While the History traced how each branch of the sciences had evolved since antiquity, Whewell viewed the Philosophy as the "Moral" of the previous work as it sought to extract a universal theory of knowledge through the history he had just traced. In the Philosophy, Whewell attempted to follow Francis Bacon's plan for discovery of an effectual art of discovery. He examined ideas ("explication of conceptions") and by the "colligation of facts" endeavoured to unite these ideas with the facts and so construct science. But no art of discovery, such as Bacon anticipated, follows, for "invention, sagacity, genius" are needed at each step.

Whewell's three steps of induction

Whewell analysed inductive reasoning into three steps:

  • The selection of the (fundamental) idea, such as space, number, cause, or likeness (resemblance);
  • The formation of the conception, or more special modification of those ideas, as a circle, a uniform force, etc.; and,
  • The determination of magnitudes.
  • Upon these follow special methods of induction applicable to quantity: the method of curves, the method of means, the method of least squares and the method of residues, and special methods depending on resemblance (to which the transition is made through the law of continuity), such as the method of gradation and the method of natural classification. In Philosophy of the Inductive Sciences Whewell was the first to use the term "consilience" to discuss the unification of knowledge between the different branches of learning.

    Opponent of English empiricism

    Here, as in his ethical doctrine, Whewell was moved by opposition to contemporary English empiricism. Following Immanuel Kant, he asserted against John Stuart Mill the a priori nature of necessary truth, and by his rules for the construction of conceptions he dispensed with the inductive methods of Mill.

    Whewell's neologisms

    As stated, one of Whewell's greatest gifts to science was his wordsmithing. He often corresponded with many in his field and helped them come up with new terms for their discoveries. In fact, Whewell came up with the term scientist itself in 1833, and it was first published in Whewell's anonymous 1834 review of Mary Somerville's On the Connexion of the Physical Sciences published in the Quarterly Review. (They had previously been known as "natural philosophers" or "men of science").

    Work in college administration

    Whewell was prominent not only in scientific research and philosophy, but also in university and college administration. His first work, An Elementary Treatise on Mechanics (1819), cooperated with those of George Peacock and John Herschel in reforming the Cambridge method of mathematical teaching. His work and publications also helped influence the recognition of the moral and natural sciences as an integral part of the Cambridge curriculum. In general, however, especially in later years, he opposed reform: he defended the tutorial system, and in a controversy with Connop Thirlwall (1834), opposed the admission of Dissenters; he upheld the clerical fellowship system, the privileged class of "fellow-commoners," and the authority of heads of colleges in university affairs. He opposed the appointment of the University Commission (1850), and wrote two pamphlets (Remarks) against the reform of the university (1855). He stood against the scheme of entrusting elections to the members of the senate and instead, advocated the use of college funds and the subvention of scientific and professorial work.

    He was elected Master of Trinity College, Cambridge in 1841, and retained that position until his death in 1866; he is buried in the chapel of Trinity College, Cambridge while his wives are buried together in the Mill Road Cemetery, Cambridge.

    The Whewell Professorship of International Law and the Whewell Scholarships were established through the provisions of his will.

    Whewell's interests in architecture

    Aside from Science, Whewell was also interested in the history of architecture throughout his life. He is best known for his writings on Gothic architecture, specifically his book, Architectural Notes on German Churches (first published in 1830). In this work, Whewell established a strict nomenclature for German Gothic churches and came up with a theory of stylistic development. His work is associated with the "scientific trend" of architectural writers, along with Thomas Rickman and Robert Willis.

    He paid from his own resources for the construction of two new courts of rooms at Trinity College, Cambridge, built in a Gothic style. The two courts were completed in 1860 and (posthumously) in 1868, and are now collectively named Whewell's Court (in the singular).

    Whewell's works in philosophy and morals

    Between 1835 and 1861 Whewell produced various works on the philosophy of morals and politics, the chief of which, Elements of Morality, including Polity, was published in 1845. The peculiarity of this work—written from what is known as the intuitional point of view—is its fivefold division of the springs of action and of their objects, of the primary and universal rights of man (personal security, property, contract, family rights and government), and of the cardinal virtues (benevolence, justice, truth, purity and order).

    Among Whewell's other works—too numerous to mention—were popular writings such as the third Bridgewater Treatise Astronomy and General Physics considered with reference to Natural Theology (1833), and the essay, Of the Plurality of Worlds (1853), in which he argued against the probability of life on other planets, and also the Platonic Dialogues for English Readers (1850–1861), the Lectures on the History of Moral Philosophy in England (1852), the essay, Of a Liberal Education in General, with particular reference to the Leading Studies of the University of Cambridge (1845), the important edition and abridged translation of Hugo Grotius, De jure belli ac pacis (1853), and the edition of the Mathematical Works of Isaac Barrow (1860).

    Whewell was one of the Cambridge dons whom Charles Darwin met during his education there, and when Darwin returned from the Beagle voyage he was directly influenced by Whewell, who persuaded Darwin to become secretary of the Geological Society of London. The title pages of On the Origin of Species open with a quotation from Whewell's Bridgewater Treatise about science founded on a natural theology of a creator establishing laws:

    "But with regard to the material world, we can at least go so far as this—we can perceive that events are brought about not by insulated interpositions of Divine power, exerted in each particular case, but by the establishment of general laws."

    Works by Whewell

  • (1831) "Review of J. Herschel's Preliminary discourse on the study of Natural Philosophy". The Quarterly Review. 45 (90): 374–407. July 1831. 
  • (1833) Astronomy and general physics considered with reference to Natural Theology (Bridgewater Treatise). Cambridge.
  • (1836) Elementary Treatise on Mechanics, 5th edition, first edition 1819.
  • (1837) History of the Inductive Sciences, from the Earliest to the Present Times. 3 vols, London. 2nd ed 1847. Volume 1, volume 2, volume 3. 3rd ed 1857. 1st German ed 1840–41.
  • (1837) On the Principles of English University Education. London, 1837.
  • (1840) The Philosophy of the Inductive Sciences, founded upon their history. 2 vols, London. 2nd ed 1847. Volume 1. Volume 2.
  • (1845) The Elements of Morality, including polity. 2 vols, London. Volume 1 Volume 2.
  • (1846) Lectures on systematic Morality. London.
  • (1849) Of Induction, with especial reference to Mr. J. Stuart Mill's System of Logic. London.
  • (1850) Mathematical exposition of some doctrines of political economy: second memoir. Transactions of the Cambridge Philosophical Society 9:128–49.
  • (1852) Lectures on the history of Moral Philosophy. Cambridge: Cambridge University Press.
  • (1853) Hugonis Grotii de jure belli et pacis libri tres : accompanied by an abridged translation by William Whewell, London: John W. Parker, volume 1, volume 2, volume 3.
  • (1853) Of the Plurality of Worlds. London.
  • (1857) Spedding's complete edition of the works of Bacon. Edinburgh Review 106:287–322.
  • (1858a) The history of scientific ideas. 2 vols, London.
  • (1858b) Novum Organon renovatum, London.
  • (1860a) On the philosophy of discovery: chapters historical and critical. London.
  • (1861) Plato's Republic (translation). Cambridge.
  • (1862) Six Lectures on Political Economy, Cambridge.
  • (1862) Additional Lectures on the History of Moral Philosophy, Cambridge.
  • (1866) Comte and Positivism. Macmillan's Magazine 13:353–62.
  • Honors and recognitions

  • Foreign Honorary Member of the American Academy of Arts and Sciences (1847)
  • The crater Whewell on the Moon
  • The Gothic buildings known as Whewell's Court in Trinity College, Cambridge
  • The Whewell Mineral Gallery in the Sedgwick Museum of Earth Sciences, Cambridge
  • The mineral whewellite
  • The debating society at Lancaster Royal Grammar School is named the Whewell Society in honour of Whewell being an Old Lancastrian.
  • In fiction

    In the 1857 novel Barchester Towers Charlotte Stanhope uses the topic of the theological arguments, concerning the possibility of intelligent life on other planets, between Whewell and David Brewster in an attempt to start up conversation between her impecunious brother and the wealthy young widow Eleanor Bold.

    References

    William Whewell Wikipedia