![]() | ||
In solid-state physics, the nearly free electron model (or NFE model) is a quantum mechanical model of physical properties of electrons that can move almost freely through the crystal lattice of a solid. The model is closely related to the more conceptual Empty Lattice Approximation. The model enables understanding and calculating the electronic band structure of especially metals.
Contents
Introduction - a heuristic argument
Free electrons are traveling plane waves. Generally the time independent part of their wave function is expressed as
These plane wave solutions have an energy of
The expression of the plane wave as a complex exponential function can also be written as the sum of two periodic functions which are mutually shifted a quarter of a period.
In this light the wave function of a free electron can be viewed as the sum of two plane waves. Sine and cosine functions can also be expressed as sums or differences of plane waves moving in opposite directions
Assume that there is only one kind of atom present in the lattice and that the atoms are located at the lattice points. The potential of the atoms is attractive (negative) and concentrated near the lattice points. In the remainder of the cell the potential is close to zero.
The Hamiltonian is expressed as
in which
where we integrate in
This means that at each
Let's assume that we look at the problem from the origin, at position
The atomic positions coincide with the maximum of the
and for the
For values of
As a result the aggregate will be split in high and low energy components when the kinetic energy increases and the wave vector approaches the length of the reciprocal lattice vectors. The potentials of the atomic cores can be decomposed into Fourier components to meet the requirements of a description in terms of reciprocal space parameters.
Mathematical formulation
The nearly free electron model is a modification of the free-electron gas model which includes a weak periodic perturbation meant to model the interaction between the conduction electrons and the ions in a crystalline solid. This model, like the free-electron model, does not take into account electron-electron interactions; that is, the independent-electron approximation is still in effect.
As shown by Bloch's theorem, introducing a periodic potential into the Schrödinger equation results in a wave function of the form
where the function u has the same periodicity as the lattice:
(where T is a lattice translation vector.)
Because it is a nearly free electron approximation we can assume that
A solution of this form can be plugged into the Schrödinger equation, resulting in the central equation:
where the kinetic energy
which, after dividing by
if we assume that
The reciprocal parameters Ck and UG are the Fourier coefficients of the wave function ψ(r) and the screened potential energy U(r), respectively:
The vectors G are the reciprocal lattice vectors, and the discrete values of k are determined by the boundary conditions of the lattice under consideration.
In any perturbation analysis, one must consider the base case to which the perturbation is applied. Here, the base case is with U(x) = 0, and therefore all the Fourier coefficients of the potential are also zero. In this case the central equation reduces to the form
This identity means that for each k, one of the two following cases must hold:
-
C k = 0 , -
λ k = ϵ
If the values of
In the degenerate case, however, there will be a set of lattice vectors k1, ..., km with λ1 = ... = λm. When the energy
Non-degenerate and degenerate perturbation theory can be applied in these two cases to solve for the Fourier coefficients Ck of the wavefunction (correct to first order in U) and the energy eigenvalue (correct to second order in U). An important result of this derivation is that there is no first-order shift in the energy ε in the case of no degeneracy, while there is in the case of near-degeneracy, implying that the latter case is more important in this analysis. Particularly, at the Brillouin zone boundary (or, equivalently, at any point on a Bragg plane), one finds a twofold energy degeneracy that results in a shift in energy given by:
This energy gap between Brillouin zones is known as the band gap, with a magnitude of
Results
Introducing this weak perturbation has significant effects on the solution to the Schrödinger equation, most significantly resulting in a band gap between wave vectors in different Brillouin zones.
Justifications
In this model, the assumption is made that the interaction between the conduction electrons and the ion cores can be modeled through the use of a "weak" perturbing potential. This may seem like a severe approximation, for the Coulomb attraction between these two particles of opposite charge can be quite significant at short distances. It can be partially justified, however, by noting two important properties of the quantum mechanical system:
- The force between the ions and the electrons is greatest at very small distances. However, the conduction electrons are not "allowed" to get this close to the ion cores due to the Pauli exclusion principle: the orbitals closest to the ion core are already occupied by the core electrons. Therefore, the conduction electrons never get close enough to the ion cores to feel their full force.
- Furthermore, the core electrons shield the ion charge magnitude "seen" by the conduction electrons. The result is an effective nuclear charge experienced by the conduction electrons which is significantly reduced from the actual nuclear charge.