![]() | ||
An integer triangle or integral triangle is a triangle all of whose sides have lengths that are integers. A rational triangle can be defined as one having all sides with rational length; any such rational triangle can be integrally rescaled (can have all sides multiplied by the same integer, namely a common multiple of their denominators) to obtain an integer triangle, so there is no substantive difference between integer triangles and rational triangles in this sense. Note however, that other definitions of the term "rational triangle" also exist: In 1914 Carmichael used the term in the sense that we today use the term Heronian triangle; Somos uses it to refer to triangles whose ratios of sides are rational; Conway and Guy define a rational triangle as one with rational sides and rational angles measured in degrees—in which case the only rational triangle is the rational-sided equilateral triangle.
Contents
- Integer triangles with given perimeter
- Integer triangles with given largest side
- Area of an integer triangle
- Angles of an integer triangle
- Side split by an altitude
- Medians
- Circumradius and inradius
- General formula
- Pythagorean triangles
- Pythagorean triangles with integer altitude from the hypotenuse
- Heronian triangles with sides in arithmetic progression
- Heronian triangles with one angle equal to twice another
- Isosceles Heronian triangles
- Heronian triangles whose perimeter is four times a prime
- Heronian triangles as faces of a tetrahedron
- Properties of Heronian triangles
- Integer automedian triangles
- Integer triangles in a 2D lattice
- Integer triangles with a rational angle bisector
- Integer triangles with integer n sectors of all angles
- Integer triangles with one angle with a given rational cosine
- Integer triangles with a 60 angle angles in arithmetic progression
- Integer triangles with a 120 angle
- Integer triangles with one angle equal to an arbitrary rational number times another angle
- Integer triangles with one angle equal to twice another
- Integer triangles with one angle equal to 32 times another
- Integer triangles with one angle three times another
- Integer triangles with integer ratio of circumradius to inradius
- Particular integer triangles
- References
There are various general properties for an integer triangle, given in the first section below. All other sections refer to classes of integer triangles with specific properties.
Integer triangles with given perimeter
Any triple of positive integers can serve as the side lengths of an integer triangle as long as it satisfies the triangle inequality: the longest side is shorter than the sum of the other two sides. Each such triple defines an integer triangle that is unique up to congruence. So the number of integer triangles (up to congruence) with perimeter p is the number of partitions of p into three positive parts that satisfy the triangle inequality. This is the integer closest to p2⁄48 when p is even and to (p + 3)2⁄48 when p is odd. It also means that the number of integer triangles with even numbered perimeters p = 2n is the same as the number of integer triangles with odd numbered perimeters p = 2n − 3. Thus there is no integer triangle with perimeter 1, 2 or 4, one with perimeter 3, 5, 6 or 8, and two with perimeter 7 or 10. The sequence of the number of integer triangles with perimeter p, starting at p = 1, is:
0, 0, 1, 0, 1, 1, 2, 1, 3, 2, 4, 3, 5, 4, 7, 5, 8, 7, 10, 8 ... (sequence A005044 in the OEIS)Integer triangles with given largest side
The number of integer triangles (up to congruence) with given largest side c and integer triple (a, b, c) is the number of integer triples such that a + b > c and a ≤ b ≤ c. This is the integer value Ceiling[ (c + 1)⁄2] * Floor[ (c + 1)⁄2]. Alternatively, for c even it is the double triangular number c⁄2( c⁄2 + 1) and for c odd it is the square (c + 1)2⁄4. It also means that the number of integer triangles with greatest side c exceeds the number of integer triangles with greatest side c−2 by c. The sequence of the number of non-congruent integer triangles with largest side c, starting at c = 1, is:
1, 2, 4, 6, 9, 12, 16, 20, 25, 30, 36, 42, 49, 56, 64, 72, 81, 90 ... (sequence A002620 in the OEIS)The number of integer triangles (up to congruence) with given largest side c and integer triple (a, b, c) that lie on or within a semicircle of diameter c is the number of integer triples such that a + b > c , a2 + b2 ≤ c2 and a ≤ b ≤ c. This is also the number of integer sided obtuse or right (non-acute) triangles with largest side c. The sequence starting at c = 1, is:
0, 0, 1, 1, 3, 4, 5, 7, 10, 13, 15, 17, 22, 25, 30, 33, 38, 42, 48 ... (sequence A236384 in the OEIS)Consequently, the difference between the two above sequences gives the number of acute integer sided triangles (up to congruence) with given largest side c. The sequence starting at c = 1, is:
1, 2, 3, 5, 6, 8, 11, 13, 15, 17, 21, 25, 27, 31, 34, 39, 43, 48, 52 ... (sequence A247588 in the OEIS)Area of an integer triangle
By Heron's formula, if T is the area of a triangle whose sides have lengths a, b, and c then
Since all the terms under the radical on the right side of the formula are integers it follows that all integer triangles must have an integer value of 16T2 and T2 will be rational.
Angles of an integer triangle
By the law of cosines, every angle of an integer triangle has a rational cosine.
If the angles of any triangle form an arithmetic progression then one of its angles must be 60°. For integer triangles the remaining angles must also have rational cosines and a method of generating such triangles is given below. However, apart from the trivial case of an equilateral triangle there are no integer triangles whose angles form either a geometric or harmonic progression. This is because such angles have to be rational angles of the form πp⁄q with rational 0 < p⁄q < 1. But all the angles of integer triangles must have rational cosines and this will occur only when p⁄q = 1⁄3 i.e. the integer triangle is equilateral.
The square of each internal angle bisector of an integer triangle is rational, because the general triangle formula for the internal angle bisector of angle A is
Side split by an altitude
Any altitude dropped from a vertex onto an opposite side or its extension will split that side or its extension into rational lengths.
Medians
The square of twice any median of an integer triangle is an integer, because the general formula for the squared median ma2 to side a is
Circumradius and inradius
Because the square of the area of an integer triangle is rational, the square of its circumradius is also rational, as is the square of the inradius.
The ratio of the inradius to the circumradius of an integer triangle is rational, equaling
The product of the inradius and the circumradius of an integer triangle is rational, equaling
Thus the squared distance between the incenter and the circumcenter of an integer triangle, given by Euler's theorem as R2−2Rr, is rational.
General formula
A Heronian triangle, also known as a Heron triangle or a Hero triangle, is a triangle with integer sides and integer area. Every Heronian triangle has sides proportional to
for integers m, n and k subject to the constraints:
The proportionality factor is generally a rational
Pythagorean triangles
A Pythagorean triangle is right angled and Heronian. Its three integer sides are known as a Pythagorean triple or Pythagorean triplet or Pythagorean triad. All Pythagorean triples
where m and n are coprime integers and one of them is even with m > n.
Every even number greater than 2 can be the leg of a Pythagorean triangle (not necessarily primitive) because if the leg is given by
Pythagorean triangles with integer altitude from the hypotenuse
There are no primitive Pythagorean triangles with integer altitude from the hypotenuse. This is because twice the area equals any base times the corresponding height: 2 times the area thus equals both ab and cd where d is the height from the hypotenuse c. The three side lengths of a primitive triangle are coprime, so d = ab⁄c is in fully reduced form; since c cannot equal 1 for any primitive Pythagorean triangle, d cannot be an integer.
However, if we have a non-primitive Pythagorean triple (ka, kb, kc), where (a, b, c) is a primitive Pythagorean triple and k a positive integer, then we see that d = kab⁄c, so we have an integer altitude iff c | k. Such a triangle is called decomposable, as dividing it into two similar smaller triangles with that altitude yields two more Pythagorean triangles. This is because in each smaller triangle generated, the altitude of the main triangle corresponds to one of the legs of the main triangle under the rescaling, but it is an integer multiple of that leg's value in the primitive triangle, as can be seen from the equation for the altitude above, so this is our scale factor from the primitive triangle to this subtriangle. Thus, in short, each subtriangle is the result of scaling our primitive triangle by some positive integer scale factor and thus is still a Pythagorean triangle. Unfortunately, these triangles are not in general decomposable themselves, so we don't get any fractal-type pattern.
A simple example is the Pythagorean triangle corresponding to (15, 20, 25). This has d = 12 an integer, because it is expressible as (5*3, 5*4, 5*5), so k = 5 and (a, b, c) = (3, 4, 5). And indeed, we have that our scale factor 5 is a multiple of our primitive hypotenuse 5. This is actually the smallest example possible.
Furthermore, any Pythagorean triangle with legs x, y and hypotenuse z can generate a Pythagorean triangle with an integer altitude, by scaling up the sides by the length of the hypotenuse z. If d is the altitude, then the generated Pythagorean triangle with integer altitude is given by
Consequently, all Pythagorean triangles with legs a and b, hypotenuse c, and integer altitude d from the hypotenuse, with gcd (a, b, c, d) = 1, which necessarily have both a2 + b2 = c2 and
for coprime integers m, n with m > n.
Heronian triangles with sides in arithmetic progression
A triangle with integer sides and integer area has sides in arithmetic progression if and only if the sides are (b – d, b, b + d), where
and where g is the greatest common divisor of
Heronian triangles with one angle equal to twice another
All Heronian triangles with B=2A are generated by either
with integers k, s, r such that s2 > 3r2, or
with integers q, u, v such that v > u and v2 < (7+4√3)u2.
No Heronian triangles with B = 2A are isosceles or right triangles because all resulting angle combinations generate angles with non-rational sines, giving a non-rational area or side.
Isosceles Heronian triangles
All isosceles Heronian triangles are given by rational multiples of
for coprime integers u and v with u>v.
Heronian triangles whose perimeter is four times a prime
It has been shown that a Heronian triangle whose perimeter is four times a prime is uniquely associated with the prime and that the prime is of the form
Consequently, all primitive Heronian triangles whose perimeter is four times a prime can be generated by
for integers
Furthermore, the factorization of the area is
Heronian triangles as faces of a tetrahedron
There exist tetrahedra having integer-valued volume and Heron triangles as faces. One example has one edge of 896, the opposite edge of 190, and the other four edges of 1073; two faces have areas of 436800 and the other two have areas of 47120, while the volume is 62092800.
Properties of Heronian triangles
Integer automedian triangles
An automedian triangle is one whose medians are in the same proportions (in the opposite order) as the sides. If x, y, and z are the three sides of a right triangle, sorted in increasing order by size, and if 2x < z, then z, x + y, and y − x are the three sides of an automedian triangle. For instance, the right triangle with side lengths 5, 12, and 13 can be used in this way to form the smallest integer automedian triangle, with side lengths 13, 17, and 7.
Consequently, using Euclid's formula, which generates primitive Pythagorean triangles, it is possible to generate primitive integer automedian triangles as
with
Integer triangles in a 2D lattice
A 2D lattice is a regular array of isolated points where if any one point is chosen as the Cartesian origin (0, 0), then all the other points are at (x, y) where x and y range over all positive and negative integers. A lattice triangle is any triangle drawn within a 2D lattice such that all vertices lie on lattice points. By Pick's theorem a lattice triangle has a rational area that is either an integer or has a denominator of 2. If the lattice triangle has integer sides then it is Heronian with integer area.
Furthermore, it has been proved that all Heronian triangles can be drawn as lattice triangles. Consequently, it can be stated that an integer triangle is Heronian if and only if it can be drawn as a lattice triangle.
Integer triangles with a rational angle bisector
A triangle family with integer sides
with integers
Integer triangles with integer n-sectors of all angles
There exist infinitely many non-similar triangles in which the three sides and the bisectors of each of the three angles are integers.
There exist infinitely many non-similar triangles in which the three sides and the two trisectors of each of the three angles are integers.
However, for n > 3 there exist no triangles in which the three sides and the (n–1) n-sectors of each of the three angles are integers.
Integer triangles with one angle with a given rational cosine
Some integer triangles with one angle at vertex A having given rational cosine h/k (h<0 or >0; k>0) are given by
where p and q are any coprime positive integers such that p>qk.
Integer triangles with a 60° angle (angles in arithmetic progression)
All integer triangles with a 60° angle have their angles in an arithmetic progression. All such triangles are proportional to:
with coprime integers m, n and 1 ≤ n ≤ m or 3m ≤ n. From here, all primitive solutions can be obtained by dividing a, b, and c by their greatest common divisor.
Integer triangles with a 60° angle can also be generated by
with coprime integers m, n with 0 < n < m (the angle of 60° is opposite to the side of length a). From here, all primitive solutions can be obtained by dividing a, b, and c by their greatest common divisor (e.g. an equilateral triangle solution is obtained by taking m = 2 and n = 1, but this produces a = b = c = 3, which is not a primitive solution). See also
More precisely, If
An Eisenstein triple is a set of integers which are the lengths of the sides of a triangle where one of the angles is 60 degrees.
Integer triangles with a 120° angle
Integer triangles with a 120° angle can be generated by
with coprime integers m, n with 0 < n < m (the angle of 120° is opposite to the side of length a). From here, all primitive solutions can be obtained by dividing a, b, and c by their greatest common divisor (e.g. by taking m = 4 and n = 1, one obtains a = 21, b = 9 and c = 15, which is not a primitive solution, but leads to the primitive solution a = 7, b = 3, and c = 5 which, up to order, can be obtained with the values m = 2 and n = 1). See also.
More precisely, If
Integer triangles with one angle equal to an arbitrary rational number times another angle
For positive relatively prime integers h and k, the triangle with the following sides has angles
where
Integer triangles with one angle equal to twice another
With angle A opposite side
with integers m, n such that 0 < n < m < 2n.
Note that all triangles with B = 2A (whether integer or not) have
Integer triangles with one angle equal to 3/2 times another
The equivalence class of similar triangles with
with integers
Note that all triangles with
Integer triangles with one angle three times another
We can generate the full equivalence class of similar triangles that satisfy B=3A by using the formulas
where
Note that all triangles with B = 3A (whether with integer sides or not) satisfy
Integer triangles with integer ratio of circumradius to inradius
Conditions are known in terms of elliptic curves for an integer triangle to have an integer ratio N of the circumradius to the inradius. The smallest case, that of the equilateral triangle, has N=2. In every known case, N ≡ 2 (mod 8)—that is, N–2 is divisible by 8.