Girish Mahajan (Editor)

Indecomposable distribution

Updated on
Edit
Like
Comment
Share on FacebookTweet on TwitterShare on LinkedInShare on Reddit

In probability theory, an indecomposable distribution is a probability distribution that cannot be represented as the distribution of the sum of two or more non-constant independent random variables: Z ≠ X + Y. If it can be so expressed, it is decomposable: Z = X + Y. If, further, it can be expressed as the distribution of the sum of two or more independent identically distributed random variables, then it is divisible: Z = X1 + X2.

Contents

Indecomposable

  • The simplest examples are Bernoulli distributions: if
  • then the probability distribution of X is indecomposable. Proof: Given non-constant distributions U and V, so that U assumes at least two values ab and V assumes two values cd, with a < b and c < d, then U + V assumes at least three distinct values: a + c, a + d, b + d (b + c may be equal to a + d, for example if one uses 0, 1 and 0, 1). Thus the sum of non-constant distributions assumes at least three values, so the Bernoulli distribution is not the sum of non-constant distributions.
  • Suppose a + b + c = 1, abc ≥ 0, and
  • This probability distribution is decomposable (as the sum of two Bernoulli distributions) if and otherwise indecomposable. To see, this, suppose U and V are independent random variables and U + V has this probability distribution. Then we must have for some pq ∈ [0, 1], by similar reasoning to the Bernoulli case (otherwise the sum U + V will assume more than three values). It follows that This system of two quadratic equations in two variables p and q has a solution (pq) ∈ [0, 1]2 if and only if Thus, for example, the discrete uniform distribution on the set {0, 1, 2} is indecomposable, but the binomial distribution assigning respective probabilities 1/4, 1/2, 1/4 is decomposable.
  • An absolutely continuous indecomposable distribution. It can be shown that the distribution whose density function is
  • is indecomposable.

    Decomposable

  • All infinitely divisible distributions are a fortiori decomposable; in particular, this includes the stable distributions, such as the normal distribution.
  • The uniform distribution on the interval [0, 1] is decomposable, since it is the sum of the Bernoulli variable that assumes 0 or 1/2 with equal probabilities and the uniform distribution on [0, 1/2]. Iterating this yields the infinite decomposition:
  • where the independent random variables Xn are each equal to 0 or 1 with equal probabilities – this is a Bernoulli trial of each digit of the binary expansion.
  • A sum of indecomposable random variables is necessarily decomposable (as it is a sum), and in fact may a fortiori be an infinitely divisible distribution (not just decomposable as the given sum). Suppose a random variable Y has a geometric distribution
  • on {0, 1, 2, ...}. For any positive integer k, there is a sequence of negative-binomially distributed random variables Yj, j = 1, ..., k, such that Y1 + ... + Yk has this geometric distribution. Therefore, this distribution is infinitely divisible. But now let Dn be the nth binary digit of Y, for n ≥ 0. Then the Ds are independent and
    and each term in this sum is indecomposable.

    At the other extreme from indecomposability is infinite divisibility.

  • Cramér's theorem shows that while the normal distribution is infinitely divisible, it can only be decomposed into normal distributions.
  • Cochran's theorem shows that the terms in a decomposition of a sum of squares of normal random variables into sums of squares of linear combinations of these variables always have independent chi-squared distributions.
  • References

    Indecomposable distribution Wikipedia