![]() | ||
In mathematics, a hyperbola (plural hyperbolas or hyperbolae) is a type of smooth curve lying in a plane, defined by its geometric properties or by equations for which it is the solution set. A hyperbola has two pieces, called connected components or branches, that are mirror images of each other and resemble two infinite bows. The hyperbola is one of the three kinds of conic section, formed by the intersection of a plane and a double cone. (The other conic sections are the parabola and the ellipse. A circle is a special case of an ellipse). If the plane intersects both halves of the double cone but does not pass through the apex of the cones, then the conic is a hyperbola.
Contents
- Etymology and history
- Definition of a hyperbola as locus of points
- equation
- asymptotes
- semi latus rectum
- tangent
- rectangular hyperbola
- parametric representation with hyperbolic sinecosine
- conjugate hyperbola
- Hyperbola with equation yAx
- Definition of a hyperbola by the directrix property
- Hyperbola as plane section of a cone
- The tangent bisects the lines to the foci
- Midpoints of parallel chords
- Steiner generation of a hyperbola
- Reciprocation of a circle
- Quadratic equation
- True anomaly
- Conic section analysis of the hyperbolic appearance of circles
- Derived curves
- Polar coordinates
- Parametric equations
- Elliptic coordinates
- Hyperbola as an affine image of the unit hyperbola x y1
- Hyperbola as an affine image of the hyperbola y1x
- Tangent construction
- Point construction
- Tangent asymptotes triangle
- Other properties of hyperbolas
- Sundials
- Multilateration
- Path followed by a particle
- Kortewegde Vries equation
- Angle trisection
- Efficient portfolio frontier
- Extensions
- References
Hyperbolas arise in many ways:
and so on.
Each branch of the hyperbola has two arms which become straighter (lower curvature) further out from the center of the hyperbola. Diagonally opposite arms, one from each branch, tend in the limit to a common line, called the asymptote of those two arms. So there are two asymptotes, whose intersection is at the center of symmetry of the hyperbola, which can be thought of as the mirror point about which each branch reflects to form the other branch. In the case of the curve
Hyperbolas share many of the ellipses' analytical properties such as eccentricity, focus, and directrix. Typically the correspondence can be made with nothing more than a change of sign in some term. Many other mathematical objects have their origin in the hyperbola, such as hyperbolic paraboloids (saddle surfaces), hyperboloids ("wastebaskets"), hyperbolic geometry (Lobachevsky's celebrated non-Euclidean geometry), hyperbolic functions (sinh, cosh, tanh, etc.), and gyrovector spaces (a geometry proposed for use in both relativity and quantum mechanics which is not Euclidean).
Etymology and history
The word "hyperbola" derives from the Greek ὑπερβολή, meaning "over-thrown" or "excessive", from which the English term hyperbole also derives. Hyperbolae were discovered by Menaechmus in his investigations of the problem of doubling the cube, but were then called sections of obtuse cones. The term hyperbola is believed to have been coined by Apollonius of Perga (c. 262–c. 190 BC) in his definitive work on the conic sections, the Conics. The names of the other two general conic sections, the ellipse and the parabola, derive from the corresponding Greek words for "deficient" and "applied"; all three names are borrowed from earlier Pythagorean terminology which referred to a comparison of the side of rectangles of fixed area with a given line segment. The rectangle could be "applied" to the segment (meaning, have an equal length), be shorter than the segment or exceed the segment.
Definition of a hyperbola as locus of points
A hyperbola can be defined geometrically as a set of points (locus of points) in the Euclidean plane:
The midpoint
Remark:
The equation
If
equation
Usually one introduces Cartesian coordinates such that the origin is the center of the hyperbola and the x-axis is the major axis. In this case the hyperbola is called east-west-opening and
the foci are the pointsFor an arbitrary point
Removing the square roots by suitable squarings and with the abbriviation
The shape parameters
From the equation one recognizes: The hyperbola is symmetric to both the coordinate axes and hence symmetric to the origin, too.
asymptotes
Solving the equation (above) of the hyperbola for
Herefrom one recognizes that the hyperbola comes closer to the two lines
for large values of
semi latus rectum
The length of the chord through one of the foci, which is perpendicular to the major axis of the hyperbola is called latus rectum. One half of it is the semi latus rectum
Further meaning:
tangent
The simplest way to determine the equation of the tangent at a point
With respect of
rectangular hyperbola
In case of
parametric representation with hyperbolic sine/cosine
Using the hyperbolic sine and cosine functions
(It is
conjugate hyperbola
If one exchanges
Hyperbola with equation y=A/x
If the xy-coordinate system is rotated about the origin by the angle
The rectangular hyperbola
Thus, in an xy-coordinate system the graph of a function
A rotation of the hyperbola by
Shifting the hyperbola with equation
and the new asymptotes are
The shape parameters
Definition of a hyperbola by the directrix property
The two parallel lines with distance
The proof for the pair
Analogously the second case is proven.
The inverse statement is true either and can be used to define a hyperbola (similar to a parabola):
(The choice
Let be
The abbriviation
This is the equation of an ellipse (
If
which is the equation of a hyperbola with center
Hyperbola as plane section of a cone
The intersection of an upright double cone by a plane not through the vertex with slope greater than the slope of the lines on the cone is a hyperbola (see picture: red curve). In order to proof the defining property of a hyperbola (see above) one uses two Dandelin spheres
- Let be
P an arbitrary point of the intersection curve . - The generator (line) of the cone containing
P intersects circlec 1 A and circlec 2 B . - The linesegments
P F 1 ¯ P A ¯ d 1 - The line segments
P F 2 ¯ P B ¯ d 2 - The result is:
| P F 1 | − | P F 2 | = | P A | − | P B | = | A B | is independent of the hyperbola pointP .
The tangent bisects the lines to the foci
For a hyperbola the following statement is true:
Let be
From the picture and the triangle inequality one recognizes that
Midpoints of parallel chords
The points of any chord may lie on different branches of the hyperbola.
The proof of the property on midpoints is done at its best for the hyperbola
For two points
For parallel chords the slope is constant and the midpoints of the parallel chords on the line
Consequence: For any pair of points
Because a skew reflection leaves the hyperbola fixed, the pair of asymptotes is fixed either. Hence the midpoint
If the chord degenerates into a tangent, then the touching point divides the line segment between the asymptotes in two halves.
Steiner generation of a hyperbola
The following method to construct single points of a hyperbola relies on the Steiner generation of a non degenerate conic section:
For the generation of points of the hyperbola
Remark: The subdivision could be extended beyond the points
Remark:
- The Steiner generation exists for ellipses and parabolas, too.
- The Steiner generation is sometimes called parallelogram method because one can use other points than the vertices which starts with a parallelogram instead of a rectangle.
Reciprocation of a circle
The reciprocation of a circle B in a circle C always yields a conic section such as a hyperbola. The process of "reciprocation in a circle C" consists of replacing every line and point in a geometrical figure with their corresponding pole and polar, respectively. The pole of a line is the inversion of its closest point to the circle C, whereas the polar of a point is the converse, namely, a line whose closest point to C is the inversion of the point.
The eccentricity of the conic section obtained by reciprocation is the ratio of the distances between the two circles' centers to the radius r of reciprocation circle C. If B and C represent the points at the centers of the corresponding circles, then
Since the eccentricity of a hyperbola is always greater than one, the center B must lie outside of the reciprocating circle C.
This definition implies that the hyperbola is both the locus of the poles of the tangent lines to the circle B, as well as the envelope of the polar lines of the points on B. Conversely, the circle B is the envelope of polars of points on the hyperbola, and the locus of poles of tangent lines to the hyperbola. Two tangent lines to B have no (finite) poles because they pass through the center C of the reciprocation circle C; the polars of the corresponding tangent points on B are the asymptotes of the hyperbola. The two branches of the hyperbola correspond to the two parts of the circle B that are separated by these tangent points.
Quadratic equation
A hyperbola can also be defined as a second-degree equation in the Cartesian coordinates (x, y) in the plane,
provided that the constants Axx, Axy, Ayy, Bx, By, and C satisfy the determinant condition
This determinant is conventionally called the discriminant of the conic section.
A special case of a hyperbola—the degenerate hyperbola consisting of two intersecting lines—occurs when another determinant is zero:
This determinant Δ is sometimes called the discriminant of the conic section.
Given the above general parametrization of the hyperbola in Cartesian coordinates, the eccentricity can be found using the formula in Conic section#Eccentricity in terms of parameters of the quadratic form.
The center (xc, yc) of the hyperbola may be determined from the formulae
In terms of new coordinates, ξ = x − xc and η = y − yc, the defining equation of the hyperbola can be written
The principal axes of the hyperbola make an angle φ with the positive x-axis that is given by
Rotating the coordinate axes so that the x-axis is aligned with the transverse axis brings the equation into its canonical form
The major and minor semiaxes a and b are defined by the equations
where λ1 and λ2 are the roots of the quadratic equation
For comparison, the corresponding equation for a degenerate hyperbola (consisting of two intersecting lines) is
The tangent line to a given point (x0, y0) on the hyperbola is defined by the equation
where E, F and G are defined by
The normal line to the hyperbola at the same point is given by the equation
The normal line is perpendicular to the tangent line, and both pass through the same point (x0, y0).
From the equation
the left focus is
and for a point on the left branch,
This can be proved as follows:
If (x,y) is a point on the hyperbola the distance to the left focal point is
To the right focal point the distance is
If (x,y) is a point on the right branch of the hyperbola then
Subtracting these equations one gets
If (x,y) is a point on the left branch of the hyperbola then
Subtracting these equations one gets
True anomaly
In the section above it is shown that using the coordinate system in which the equation of the hyperbola takes its canonical form
the distance
Introducing polar coordinates
and the equation above takes the form
from which it follows that
This is the representation of the near branch of a hyperbola in polar coordinates with respect to a focal point.
The polar angle
Conic section analysis of the hyperbolic appearance of circles
Besides providing a uniform description of circles, ellipses, parabolas, and hyperbolas, conic sections can also be understood as a natural model of the geometry of perspective in the case where the scene being viewed consists of a circle, or more generally an ellipse. The viewer is typically a camera or the human eye. In the simplest case the viewer's lens is just a pinhole; the role of more complex lenses is merely to gather far more light while retaining as far as possible the simple pinhole geometry in which all rays of light from the scene pass through a single point. Once through the lens, the rays then spread out again, in air in the case of a camera, in the vitreous humor in the case of the eye, eventually distributing themselves over the film, imaging device, or retina, all of which come under the heading of image plane. The lens plane is a plane parallel to the image plane at the lens; all rays pass through a single point on the lens plane, namely the lens itself.
When the circle directly faces the viewer, the viewer's lens is on-axis, meaning on the line normal to the circle through its center (think of the axle of a wheel). The rays of light from the circle through the lens to the image plane then form a cone with circular cross section whose apex is the lens. The image plane concretely realizes the abstract cutting plane in the conic section model.
When in addition the viewer directly faces the circle, the circle is rendered faithfully on the image plane without perspective distortion, namely as a scaled-down circle. When the viewer turns attention or gaze away from the center of the circle the image plane then cuts the cone in an ellipse, parabola, or hyperbola depending on how far the viewer turns, corresponding exactly to what happens when the surface cutting the cone to form a conic section is rotated.
A parabola arises when the lens plane is tangent to (touches) the circle. A viewer with perfect 180-degree wide-angle vision will see the whole parabola; in practice this is impossible and only a finite portion of the parabola is captured on the film or retina.
When the viewer turns further so that the lens plane cuts the circle in two points, the shape on the image plane becomes that of a hyperbola. The viewer still sees only a finite curve, namely a portion of one branch of the hyperbola, and is unable to see the second branch at all, which corresponds to the portion of the circle behind the viewer, more precisely, on the same side of the lens plane as the viewer. In practice the finite extent of the image plane makes it impossible to see any portion of the circle near where it is cut by the lens plane. Further back however one could imagine rays from the portion of the circle well behind the viewer passing through the lens, were the viewer transparent. In this case the rays would pass through the image plane before the lens, yet another impracticality ensuring that no portion of the second branch could possibly be visible.
The tangents to the circle where it is cut by the lens plane constitute the asymptotes of the hyperbola. Were these tangents to be drawn in ink in the plane of the circle, the eye would perceive them as asymptotes to the visible branch. Whether they converge in front of or behind the viewer depends on whether the lens plane is in front of or behind the center of the circle respectively.
If the circle is drawn on the ground and the viewer gradually transfers gaze from straight down at the circle up towards the horizon, the lens plane eventually cuts the circle producing first a parabola then a hyperbola on the image plane as shown in Figure 10. As the gaze continues to rise the asymptotes of the hyperbola, if realized concretely, appear coming in from left and right, swinging towards each other and converging at the horizon when the gaze is horizontal. Further elevation of the gaze into the sky then brings the point of convergence of the asymptotes towards the viewer.
By the same principle with which the back of the circle appears on the image plane were all the physical obstacles to its projection to be overcome, the portion of the two tangents behind the viewer appear on the image plane as an extension of the visible portion of the tangents in front of the viewer. Like the second branch this extension materializes in the sky rather than on the ground, with the horizon marking the boundary between the physically visible (scene in front) and invisible (scene behind), and the visible and invisible parts of the tangents combining in a single X shape. As the gaze is raised and lowered about the horizon, the X shape moves oppositely, lowering as the gaze is raised and vice versa but always with the visible portion being on the ground and stopping at the horizon, with the center of the X being on the horizon when the gaze is horizontal.
All of the above was for the case when the circle faces the viewer, with only the viewer's gaze varying. When the circle starts to face away from the viewer the viewer's lens is no longer on-axis. In this case the cross section of the cone is no longer a circle but an ellipse (never a parabola or hyperbola). However the principle of conic sections does not depend on the cross section of the cone being circular, and applies without modification to the case of eccentric cones.
Even in the off-axis case a circle can appear circular, namely when the image plane (and hence lens plane) is parallel to the plane of the circle. That is, to see a circle as a circle when viewing it obliquely, look not at the circle itself but at the plane in which it lies. From this it can be seen that when viewing a plane filled with many circles, all of them will appear circular simultaneously when the plane is looked at directly.
One sees a hyperbola whenever catching sight of portion of a circle cut by one's lens plane (and a parabola when the lens plane is tangent to, i.e. just touches, the circle). The inability to see very much of the arms of the visible branch, combined with the complete absence of the second branch, makes it virtually impossible for the human visual system to recognize the connection with hyperbolas such as y = 1/x where both branches are on display simultaneously.
Derived curves
Several other curves can be derived from the hyperbola by inversion, the so-called inverse curves of the hyperbola. If the center of inversion is chosen as the hyperbola's own center, the inverse curve is the lemniscate of Bernoulli; the lemniscate is also the envelope of circles centered on a rectangular hyperbola and passing through the origin. If the center of inversion is chosen at a focus or a vertex of the hyperbola, the resulting inverse curves are a limaçon or a strophoid, respectively.
Polar coordinates
The polar coordinates used most commonly for the hyperbola are defined relative to the Cartesian coordinate system that has its origin in a focus and its x-axis pointing towards the origin of the "canonical coordinate system" as illustrated in the figure of the section True anomaly.
Relative to this coordinate system one has that
and the range of the true anomaly
With polar coordinate relative to the "canonical coordinate system"
one has that
For the right branch of the hyperbola the range of
Parametric equations
East-west opening hyperbola:
North-south opening hyperbola:
In all formulae (h,k) are the center coordinates of the hyperbola, a is the length of the semi-major axis, and b is the length of the semi-minor axis.
Elliptic coordinates
A family of confocal hyperbolas is the basis of the system of elliptic coordinates in two dimensions. These hyperbolas are described by the equation
where the foci are located at a distance c from the origin on the x-axis, and where θ is the angle of the asymptotes with the x-axis. Every hyperbola in this family is orthogonal to every ellipse that shares the same foci. This orthogonality may be shown by a conformal map of the Cartesian coordinate system w = z + 1/z, where z= x + iy are the original Cartesian coordinates, and w=u + iv are those after the transformation.
Other orthogonal two-dimensional coordinate systems involving hyperbolas may be obtained by other conformal mappings. For example, the mapping w = z2 transforms the Cartesian coordinate system into two families of orthogonal hyperbolas.
Hyperbola as an affine image of the unit hyperbola x²-y²=1
Another definition of a hyperbola uses affine transformations:
An affine transformation of the Euclidean plane has the form
The tangent vector at point
Because at a vertex the tangent is perpendicular to the major axis of the hyperbola one gets the parameter
and hence from
which yields
(The formulae
The two vertices of the hyperbola are
The advantage of this definition is that one gets a simple parametric representation of an arbitrary hyperbola, even in the space, if the vectors
Hyperbola as an affine image of the hyperbola y=1/x
Because the unit hyperbola
At a vertex the tangent is perpendicular to the major axis. Hence
and the parameter of a vertex is
For
The following properties of a hyperbola are easily proven using the representation of a hyperbola introduced in this section.
Tangent construction
The tangent vector can be rewritten by factorization:
This means that
This property provides a way to construct the tangent at a point on the hyperbola.
This property of a hyperbola is an affine version of the 3-point-degeneration of Pascal's theorem.
Point construction
For a hyperbola with parametric representation
The simple proof is a consequence of the equation
This property provides a possibilty to construct points of a hyperbola if the asymptotes and one point are given.
This property of a hyperbola is an affine version of the 4-point-degeneration of Pascal's theorem.
Tangent-asymptotes-triangle
For simplicity the center of the hyperbola may be the origin and the vectors
For the intersection points of the tangent at point
The area of the triangle
(see rules for determinants).
Other properties of hyperbolas
Sundials
Hyperbolas may be seen in many sundials. On any given day, the sun revolves in a circle on the celestial sphere, and its rays striking the point on a sundial traces out a cone of light. The intersection of this cone with the horizontal plane of the ground forms a conic section. At most populated latitudes and at most times of the year, this conic section is a hyperbola. In practical terms, the shadow of the tip of a pole traces out a hyperbola on the ground over the course of a day (this path is called the declination line). The shape of this hyperbola varies with the geographical latitude and with the time of the year, since those factors affect the cone of the sun's rays relative to the horizon. The collection of such hyperbolas for a whole year at a given location was called a pelekinon by the Greeks, since it resembles a double-bladed axe.
Multilateration
A hyperbola is the basis for solving multilateration problems, the task of locating a point from the differences in its distances to given points — or, equivalently, the difference in arrival times of synchronized signals between the point and the given points. Such problems are important in navigation, particularly on water; a ship can locate its position from the difference in arrival times of signals from a LORAN or GPS transmitters. Conversely, a homing beacon or any transmitter can be located by comparing the arrival times of its signals at two separate receiving stations; such techniques may be used to track objects and people. In particular, the set of possible positions of a point that has a distance difference of 2a from two given points is a hyperbola of vertex separation 2a whose foci are the two given points.
Path followed by a particle
The path followed by any particle in the classical Kepler problem is a conic section. In particular, if the total energy E of the particle is greater than zero (i.e., if the particle is unbound), the path of such a particle is a hyperbola. This property is useful in studying atomic and sub-atomic forces by scattering high-energy particles; for example, the Rutherford experiment demonstrated the existence of an atomic nucleus by examining the scattering of alpha particles from gold atoms. If the short-range nuclear interactions are ignored, the atomic nucleus and the alpha particle interact only by a repulsive Coulomb force, which satisfies the inverse square law requirement for a Kepler problem.
Korteweg–de Vries equation
The hyperbolic trig function
Angle trisection
As shown first by Apollonius of Perga, a hyperbola can be used to trisect any angle, a well studied problem of geometry. Given an angle, first draw a circle centered at its vertex O, which intersects the sides of the angle at points A and B. Next draw the line segment with endpoints A and B and its perpendicular bisector
Efficient portfolio frontier
In portfolio theory, the locus of mean-variance efficient portfolios (called the efficient frontier) is the upper half of the east-opening branch of a hyperbola drawn with the portfolio return's standard deviation plotted horizontally and its expected value plotted vertically; according to this theory, all rational investors would choose a portfolio characterized by some point on this locus.
Extensions
The three-dimensional analog of a hyperbola is a hyperboloid. Hyperboloids come in two varieties, those of one sheet and those of two sheets. A simple way of producing a hyperboloid is to rotate a hyperbola about the axis of its foci or about its symmetry axis perpendicular to the first axis; these rotations produce hyperboloids of two and one sheet, respectively.