![]() | ||
In elementary algebra, the binomial theorem (or binomial expansion) describes the algebraic expansion of powers of a binomial. According to the theorem, it is possible to expand the polynomial (x + y)n into a sum involving terms of the form a xb yc, where the exponents b and c are nonnegative integers with b + c = n, and the coefficient a of each term is a specific positive integer depending on n and b. For example,
Contents
- History
- Theorem statement
- Examples
- Geometric explanation
- Binomial coefficients
- Formulae
- Combinatorial interpretation
- Example
- General case
- Inductive proof
- Newtons generalized binomial theorem
- Further generalizations
- Multinomial theorem
- Multi binomial theorem
- Multiple angle identities
- Series for e
- Derivative of the power function
- Nth derivative of a product
- Probability
- The binomial theorem in abstract algebra
- In popular culture
- References
The coefficient a in the term of a xb yc is known as the binomial coefficient
History
Special cases of the binomial theorem were known from ancient times. The 4th century B.C. Greek mathematician Euclid mentioned the special case of the binomial theorem for exponent 2. There is evidence that the binomial theorem for cubes was known by the 6th century in India.
Binomial coefficients, as combinatorial quantities expressing the number of ways of selecting k objects out of n without replacement, were of interest to the ancient Hindus. The earliest known reference to this combinatorial problem is the Chandaḥśāstra by the Hindu lyricist Pingala (c. 200 B.C.), which contains a method for its solution. The commentator Halayudha from the 10th century A.D. explains this method using what is now known as Pascal's triangle. By the 6th century A.D., the Hindu mathematicians probably knew how to express this as a quotient
The binomial theorem as such can be found in the work of 11th-century Persian mathematician Al-Karaji, who described the triangular pattern of the binomial coefficients. He also provided a mathematical proof of both the binomial theorem and Pascal's triangle, using a primitive form of mathematical induction. The Persian poet and mathematician Omar Khayyam was probably familiar with the formula to higher orders, although many of his mathematical works are lost. The binomial expansions of small degrees were known in the 13th century mathematical works of Yang Hui and also Chu Shih-Chieh. Yang Hui attributes the method to a much earlier 11th century text of Jia Xian, although those writings are now also lost.
In 1544, Michael Stifel introduced the term "binomial coefficient" and showed how to use them to express
Isaac Newton is generally credited with the generalized binomial theorem, valid for any rational exponent.
Theorem statement
According to the theorem, it is possible to expand any power of x + y into a sum of the form
where each
The final expression follows from the previous one by the symmetry of x and y in the first expression, and by comparison it follows that the sequence of binomial coefficients in the formula is symmetrical. A simple variant of the binomial formula is obtained by substituting 1 for y, so that it involves only a single variable. In this form, the formula reads
or equivalently
Examples
The most basic example of the binomial theorem is the formula for the square of x + y:
The binomial coefficients 1, 2, 1 appearing in this expansion correspond to the second row of Pascal's triangle. (Note that the top "1" of the triangle is considered to be row 0, by convention.) The coefficients of higher powers of x + y correspond to lower rows of the triangle:
Several patterns can be observed from these examples. In general, for the expansion (x + y)n:
- the powers of x start at n and decrease by 1 in each term until they reach 0 (with x0 = 1, often unwritten);
- the powers of y start at 0 and increase by 1 until they reach n;
- the nth row of Pascal's Triangle will be the coefficients of the expanded binomial when the terms are arranged in this way;
- the number of terms in the expansion before like terms are combined is the sum of the coefficients and is equal to 2n; and
- there will be n + 1 terms in the expression after combining like terms in the expansion.
The binomial theorem can be applied to the powers of any binomial. For example,
For a binomial involving subtraction, the theorem can be applied by using the form (x − y)n = (x + (−y))n. This has the effect of changing the sign of every other term in the expansion:
Geometric explanation
For positive values of a and b, the binomial theorem with n = 2 is the geometrically evident fact that a square of side a + b can be cut into a square of side a, a square of side b, and two rectangles with sides a and b. With n = 3, the theorem states that a cube of side a + b can be cut into a cube of side a, a cube of side b, three a×a×b rectangular boxes, and three a×b×b rectangular boxes.
In calculus, this picture also gives a geometric proof of the derivative
Substituting this into the definition of the derivative via a difference quotient and taking limits means that the higher order terms,
If one integrates this picture, which corresponds to applying the fundamental theorem of calculus, one obtains Cavalieri's quadrature formula, the integral
Binomial coefficients
The coefficients that appear in the binomial expansion are called binomial coefficients. These are usually written
Formulae
The coefficient of xn−kyk is given by the formula
which is defined in terms of the factorial function n!. Equivalently, this formula can be written
with k factors in both the numerator and denominator of the fraction. Note that, although this formula involves a fraction, the binomial coefficient
Combinatorial interpretation
The binomial coefficient
then, according to the distributive law, there will be one term in the expansion for each choice of either x or y from each of the binomials of the product. For example, there will only be one term xn, corresponding to choosing x from each binomial. However, there will be several terms of the form xn−2y2, one for each way of choosing exactly two binomials to contribute a y. Therefore, after combining like terms, the coefficient of xn−2y2 will be equal to the number of ways to choose exactly 2 elements from an n-element set.
Example
The coefficient of xy2 in
equals
corresponding to the three 2-element subsets of { 1, 2, 3 }, namely,
where each subset specifies the positions of the y in a corresponding string.
General case
Expanding (x + y)n yields the sum of the 2 n products of the form e1e2 ... e n where each e i is x or y. Rearranging factors shows that each product equals xn−kyk for some k between 0 and n. For a given k, the following are proved equal in succession:
This proves the binomial theorem.
Inductive proof
Induction yields another proof of the binomial theorem. When n = 0, both sides equal 1, since x0 = 1 and
shows that (x + y)n + 1 also is a polynomial in x and y, and
since if j + k = n + 1, then (j − 1) + k = n and j + (k − 1) = n. Now, the right hand side is
by Pascal's identity. On the other hand, if j +k ≠ n + 1, then (j – 1) + k ≠ n and j +(k – 1) ≠ n, so we get 0 + 0 = 0. Thus
which is the inductive hypothesis with n + 1 substituted for n and so completes the inductive step.
Newton's generalized binomial theorem
Around 1665, Isaac Newton generalized the binomial theorem to allow real exponents other than nonnegative integers. (The same generalization also applies to complex exponents.) In this generalization, the finite sum is replaced by an infinite series. In order to do this, one needs to give meaning to binomial coefficients with an arbitrary upper index, which cannot be done using the usual formula with factorials. However, for an arbitrary number r, one can define
where
When r is a nonnegative integer, the binomial coefficients for k > r are zero, so this equation reduces to the usual binomial theorem, and there are at most r + 1 nonzero terms. For other values of r, the series typically has infinitely many nonzero terms.
For example, with r = 1/2 gives the following series for the square root:
Taking
More generally, with r = −s:
So, for instance, when
Further generalizations
The generalized binomial theorem can be extended to the case where x and y are complex numbers. For this version, one should again assume |x| > |y| and define the powers of x + y and x using a holomorphic branch of log defined on an open disk of radius |x| centered at x.
The generalized binomial theorem is valid also for elements x and y of a Banach algebra as long as xy = yx, x is invertible, and ||y/x|| < 1.
Multinomial theorem
The binomial theorem can be generalized to include powers of sums with more than two terms. The general version is
where the summation is taken over all sequences of nonnegative integer indices k1 through km such that the sum of all ki is n. (For each term in the expansion, the exponents must add up to n). The coefficients
Combinatorially, the multinomial coefficient
Multi-binomial theorem
It is often useful when working in more dimensions, to deal with products of binomial expressions. By the binomial theorem this is equal to
This may be written more concisely, by multi-index notation, as
Multiple-angle identities
For the complex numbers the binomial theorem can be combined with De Moivre's formula to yield multiple-angle formulas for the sine and cosine. According to De Moivre's formula,
Using the binomial theorem, the expression on the right can be expanded, and then the real and imaginary parts can be taken to yield formulas for cos(nx) and sin(nx). For example, since
De Moivre's formula tells us that
which are the usual double-angle identities. Similarly, since
De Moivre's formula yields
In general,
and
Series for e
The number e is often defined by the formula
Applying the binomial theorem to this expression yields the usual infinite series for e. In particular:
The kth term of this sum is
As n → ∞, the rational expression on the right approaches one, and therefore
This indicates that e can be written as a series:
Indeed, since each term of the binomial expansion is an increasing function of n, it follows from the monotone convergence theorem for series that the sum of this infinite series is equal to e.
Derivative of the power function
In finding the derivative of the power function f(x) = xn for integer n using the definition of derivative, one can expand the binomial (x + h)n.
Nth derivative of a product
To indicate the formula for the derivative of order n of the product of two functions, the formula of the binomial theorem is used symbolically.
Probability
The binomial theorem is closely related to the probability mass function of the negative binomial distribution. The probability of a (countable) collection of independent Bernoulli trials
The binomial theorem in abstract algebra
Formula (1) is valid more generally for any elements x and y of a semiring satisfying xy = yx. The theorem is true even more generally: alternativity suffices in place of associativity.
The binomial theorem can be stated by saying that the polynomial sequence { 1, x, x2, x3, ... } is of binomial type.