Neha Patil

Antiarrhythmic agent

Updated on
Share on FacebookTweet on TwitterShare on LinkedIn
Antiarrhythmic agent

Antiarrhythmic agents are a group of pharmaceuticals that are used to suppress abnormal rhythms of the heart (cardiac arrhythmias), such as atrial fibrillation, atrial flutter, ventricular tachycardia, and ventricular fibrillation.

Contents

Many attempts have been made to classify antiarrhythmic agents. The problem arises from the fact that many of the antiarrhythmic agents have multiple modes of action, making any classification imprecise.

Singh-Vaughan Williams classification

The Singh-Vaughan Williams classification was introduced in 1970. As a doctoral candidate at Oxford University, Dr. Bramah N. Singh determined that amiodarone and sotalol had antiarrhythmic properties and belonged to a new class of antiarrhythmic agents (what would become the class III antiarrhythmic agents). Singh developed part of the classification system while working in the lab of Miles Vaughan Williams and part of the system after leaving Oxford. Singh subsequently pioneered the use of these agents at bedside over the next several decades of practice in the United States.

With regards to management of atrial fibrillation, classes I and III are used in rhythm control as medical cardioversion agents, while classes II and IV are used as rate-control agents.

The five main classes in the Singh-Vaughan Williams classification of antiarrhythmic agents are:

  • Class I agents interfere with the sodium (Na+) channel.
  • Class II agents are anti-sympathetic nervous system agents. Most agents in this class are beta blockers.
  • Class III agents affect potassium (K+) efflux.
  • Class IV agents affect calcium channels and the AV node.
  • Class V agents work by other or unknown mechanisms.
  • Class I agents

    The class I antiarrhythmic agents interfere with the sodium channel. Class I agents are grouped by what effect they have on the Na+ channel, and what effect they have on cardiac action potentials.

    Class I agents are called membrane-stabilizing agents. The 'stabilizing' word is used to describe the decrease of excitogenicity of the plasma membrane which is brought about by these agents. (Also noteworthy is that a few class II agents like propranolol also have a membrane stabilizing effect.)

    Class I agents are divided into three groups (Ia, Ib, and Ic) based upon their effect on the length of the action potential.

  • Ia lengthens the action potential (right shift)
  • Ib shortens the action potential (left shift)
  • Ic does not significantly affect the action potential (no shift)
  • Class II agents

    Class II agents are conventional beta blockers. They act by blocking the effects of catecholamines at the β1-adrenergic receptors, thereby decreasing sympathetic activity on the heart. These agents are particularly useful in the treatment of supraventricular tachycardias. They decrease conduction through the AV node.

    Class II agents include atenolol, esmolol, propranolol, and metoprolol.

    Class III agents

    Class III agents predominantly block the potassium channels, thereby prolonging repolarization. Since these agents do not affect the sodium channel, conduction velocity is not decreased. The prolongation of the action potential duration and refractory period, combined with the maintenance of normal conduction velocity, prevent re-entrant arrhythmias. (The re-entrant rhythm is less likely to interact with tissue that has become refractory). The class III agents exhibit reverse-use dependence (their potency increases with slower heart rates, and therefore improves maintenance of sinus rhythm). Inhibiting potassium channels, slowing repolarization, results in slowed atrial-ventricular myocyte repolarization. Class III agents have the potential to prolong the QT interval of the EKG, and may be proarrhythmic (more associated with development of polymorphic VT).

    Class III agents include: bretylium, amiodarone, ibutilide, sotalol, dofetilide, and dronedarone.

    Class IV agents

    Class IV agents are slow calcium channel blockers. They decrease conduction through the AV node, and shorten phase two (the plateau) of the cardiac action potential. They thus reduce the contractility of the heart, so may be inappropriate in heart failure. However, in contrast to beta blockers, they allow the body to retain adrenergic control of heart rate and contractility.

    Class IV agents include verapamil and diltiazem.

    Class V / other agents

    Since the development of the original Singh-Vaughan Williams classification system, additional agents have been used that do not fit cleanly into categories I through IV.

    Agents include:

  • Digoxin, which decreases conduction of electrical impulses through the AV node and increases vagal activity via its central action on the central nervous system, via indirect action, leads to an increase in acetylcholine production, stimulating M2 receptors on AV node leading to an overall decrease in speed of conduction.
  • Adenosine is used intravenously for terminating supraventricular tachycardias.
  • Magnesium sulfate, an antiarrhythmic drug, but only against very specific arrhythmias which has been used for torsades de pointes.
  • Trimagnesium dicitrate (anhydrous) as powder or powder caps in pure condition, better bioavailability than ordinary MgO
  • Sicilian gambit classification

    Another approach, known as the "Sicilian gambit", placed a greater approach on the underlying mechanism.

    It presents the drugs on two axes, instead of one, and is presented in tabular form. On the Y axis, each drug is listed, in roughly the Singh-Vaughan Williams order. On the X axis, the channels, receptors, pumps, and clinical effects are listed for each drug, with the results listed in a grid. It is, therefore, not a true classification in that it does not aggregate drugs into categories.

    References

    Antiarrhythmic agent Wikipedia


    Similar Topics
    The Wild Country
    Sam Agarwal
    Tony Puletua
    Topics