Rahul Sharma (Editor)

Tetrafluoroammonium

Updated on
Edit
Like
Comment
Share on FacebookTweet on TwitterShare on LinkedInShare on Reddit
Tetrafluoroammonium

The tetrafluoroammonium cation (also known as perfluoroammonium) is a positively charged polyatomic ion with chemical formula NF+
4
. It is equivalent to the ammonium ion where the hydrogen atoms surrounding the central nitrogen atom have been replaced by fluorine. Tetrafluoroammonium ion is isoelectronic with tetrafluoromethane CF
4
and the tetrafluoroborate BF
4
anion.

Contents

The tetrafluoroammonium ion forms salts with a large variety of fluorine-bearing anions. These include the bifluoride anion (HF
2
), tetrafluorobromate (BrF
4
), metal pentafluorides (XF
5
where X is Ge, Sn, or Ti), hexafluorides (XF
6
where X is P, As, Sb, Bi, or Pt), heptafluorides (XF
7
where X is W, U, or Xe), octafluorides (XeF2−
8
), various oxyfluorides (XF
5
O
where X is W or U; FSO
3
, BrF
4
O
), and perchlorate (ClO
4
). Attempts to make the nitrate salt, NF
4
NO
3
, were unsuccessful because of quick fluorination: NF+
4
+ NO
3
NF
3
+ FONO
2
.

Structure

The geometry of the tetrafluoroammonium ion is tetrahedral, with an estimated nitrogen-fluorine bond length of 124 pm. All fluorine atoms are in equivalent positions.

Synthesis

Tetrafluoroammonium salts are prepared by oxidising nitrogen trifluoride with fluorine in the presence of a strong Lewis acid which acts as a fluoride ion acceptor. The original synthesis by Tolberg, Rewick, Stringham, and Hill in 1966 employs antimony pentafluoride as the Lewis acid:

NF
3
+ F
2
+ SbF
5
NF
4
SbF
6

The hexafluoroarsenate salt was also prepared by a similar reaction with arsenic pentafluoride at 120 °C:

NF
3
+ F
2
+ AsF
5
NF
4
AsF
6

The reaction of nitrogen trifluoride with fluorine and boron trifluoride at 800 °C yields the tetrafluoroborate salt:

NF
3
+ F
2
+ BF
3
NF
4
BF
4

NF+
4
salts can also be prepared by fluorination of NF
3
with krypton difluoride (KrF
2
) and fluorides of the form MF
n
, where M is Sb, Nb, Pt, Ti, or B. For example, reaction of NF
3
with KrF
2
and TiF
4
yields [NF+
4
]
2
TiF2−
6
.

Many tetrafluoroammonium salts can be prepared with metathesis reactions.

Reactions

Tetrafluoroammonium salts are extremely hygroscopic. The NF+
4
ion is readily hydrolysed into nitrogen trifluoride, H
2
F+
, and oxygen gas:

2 NF+
4
+ 2 H
2
O
→ 2 NF
3
+ 2 H
2
F+
+ O
2

Some hydrogen peroxide (H
2
O
2
) is also formed during this process.

Reaction of NF+
4
SbF
6
with alkali metal nitrates yields fluorine nitrate, FONO
2
.

Properties

Because tetrafluoroammonium salts are destroyed by water, it cannot be used as a solvent. Instead anhydrous hydrogen fluoride or bromine pentafluoride can be used as a solvent to dissolve these salts.

Tetrafluoroammonium salts usually have no colour. However some are coloured due to other metals in them. Red salts include (NF+
4
)
2
CrF2−
6
, (NF+
4
)
2
NiF2−
6
and (NF+
4
)
2
PtF2−
6
. (NF+
4
)
2
MnF2−
6
, NF+
4
UF
7
, NF+
4
UOF
5
and NF+
4
XeF
7
are yellow.

Applications

NF+
4
salts are important for solid propellant NF
3
–F
2
gas generators. They are also used as reagents for electrophilic fluorination of aromatic compounds in organic chemistry.

References

Tetrafluoroammonium Wikipedia