In theoretical physics a nonrenormalization theorem is a limitation on how a certain quantity in the classical description of a quantum field theory may be modified by renormalization in the full quantum theory. Renormalization theorems are common in theories with a sufficient amount of supersymmetry, usually at least 4 supercharges.
Contents
- Nonrenormalization in supersymmetric theories and holomorphy
- Examples in 4 dimensional theories
- Examples in 3 dimensional theories
- Examples in 2 dimensional theories
- Nonrenormalization from a quantization condition
- References
Perhaps the first nonrenormalization theorem was introduced by Marcus T. Grisaru, Martin Rocek and Warren Siegel in their 1979 paper Improved methods for supergraphs.
Nonrenormalization in supersymmetric theories and holomorphy
Nonrenormalization theorems in supersymmetric theories are often consequences of the fact that certain objects must have a holomorphic dependence on the quantum fields and coupling constants. In this case the nonrenormalization theory is said to be a consequence of holomorphy.
The more supersymmetry a theory has, the more renormalization theorems apply. Therefore a renormalization theorem that is valid for a theory with
Examples in 4-dimensional theories
In 4 dimensions the number
In an
In an
In an
In
Examples in 3-dimensional theories
In 3 dimensions the number
When
When
When
When
Examples in 2-dimensional theories
In
Nonrenormalization from a quantization condition
In supersymmetric and nonsupersymmetric theories, the nonrenormalization of a quantity subject to the Dirac quantization condition is often a consequence of the fact that possible renormalizations would be inconsistent with the quantization condition, for example the quantization of the level of a Chern–Simons theory implies that it may only be renormalized at one-loop. In the 1994 article Nonrenormalization Theorem for Gauge Coupling in 2+1D the authors find the renormalization of the level can only be a finite shift, independent of the energy scale, and extended this result to topologically massive theories in which one includes a kinetic term for the gluons. In Notes on Superconformal Chern-Simons-Matter Theories the authors then showed that this shift needs to occur at one loop, because any renormalization at higher loops would introduce inverse powers of the level, which are nonintegral and so would be in conflict with the quantization condition.