Kalpana Kalpana (Editor)

Wave function renormalization

Updated on
Edit
Like
Comment
Share on FacebookTweet on TwitterShare on LinkedInShare on Reddit

In quantum field theory wave function renormalization is a rescaling (or renormalization) of quantum fields to take into account the effects of interactions. For a noninteracting or free field the field operator creates or annihilates a single particle with probability 1. Once interactions are included, however, this probability is modified in general to Z 1. This appears when one calculates the propagator beyond leading order; e.g. for a scalar field,

i p 2 m 0 2 + i ε i Z p 2 m 2 + i ε

(The shift of the mass from m0 to m constitutes the mass renormalization.)

One possible wave function renormalization, which happens to be scale independent, is to rescale the fields so that the Lehmann weight (Z in the formula above) of their quanta is 1. For the purposes of studying renormalization group flows, if the coefficient of the kinetic term in the action at the scale Λ is Z, then the field is rescaled by Z . A scale dependent wave function renormalization for a field means that that field has an anomalous scaling dimension.

References

Wave function renormalization Wikipedia