![]() | ||
Subjective logic
Subjective logic is a type of probabilistic logic that explicitly takes uncertainty and source trust into account. In general, subjective logic is suitable for modeling and analysing situations involving uncertainty and relatively unreliable sources. For example, it can be used for modeling and analysing trust networks and Bayesian networks.
Contents
- Subjective logic
- Subjective logic teaser
- Subjective opinions
- Binomial opinions
- Multinomial opinions
- Operators
- Properties
- Applications
- Subjective trust networks
- Subjective Bayesian networks
- Subjective networks
- References
Arguments in subjective logic are subjective opinions about state variables which can take values from a domain (aka state space), where a state value can be thought of as a proposition which can be true or false. A binomial opinion applies to a binary state variable, and can be represented as a Beta PDF (Probability Density Function). A multinomial opinion applies to a state variable of multiple possible values, and can be represented as a Dirichlet PDF (Probability Density Function). Through the correspondence between opinions and Beta/Dirichlet distributions, subjective logic provides an algebra for these functions. Opinions are also related to the belief representation in Dempster–Shafer belief theory.
A fundamental aspect of the human condition is that nobody can ever determine with absolute certainty whether a proposition about the world is true or false. In addition, whenever the truth of a proposition is expressed, it is always done by an individual, and it can never be considered to represent a general and objective belief. These philosophical ideas are directly reflected in the mathematical formalism of subjective logic.
Subjective logic teaser
Subjective opinions
Subjective opinions express subjective beliefs about the truth of state values/propositions with degrees of uncertainty, and can explicitly indicate the source of belief whenever required. An opinion is usually denoted as
Binomial opinions
Let
These components satisfy
The projected probability of a binomial opinion is defined as
Binomial opinions can be represented on an equilateral triangle as shown below. A point inside the triangle represents a
The Beta PDF is normally denoted as
Multinomial opinions
Let
Visualising multinomial opinions can be challenging. Trinomial opinions can be simply visualised as points inside a tetrahedron. Opinions with dimensions larger than trinomial do not lend themselves to simple visualisation.
Dirichlet PDFs are normally denoted as
Operators
Most operators in the table below are generalisations of binary logic and probability operators. For example addition is simply a generalisation of addition of probabilities. Some operators are only meaningful for combining binomial opinions, and some also apply to multinomial opinion. Most operators are binary, but complement is unary, and abduction is ternary. See the referenced puplications for mathematical details of each operator.
Transitive source combination can be denoted in a compact or expanded form. For example, the transitive trust path from analyst/source
Properties
In case the argument opinions are equivalent to Boolean TRUE or FALSE, the result of any subjective logic operator is always equal to that of the corresponding propositional/binary logic operator. Similarly, when the argument opinions are equivalent to traditional probabilities, the result of any subjective logic operator is always equal to that of the corresponding probability operator (when it exists).
In case the argument opinions contain degrees of uncertainty, the operators involving multiplication and division (including deduction, abduction and Bayes' theorem) will produce derived opinions that always have correct projected probability but possibly with approximate variance when seen as Beta/Dirichlet PDFs. All other operators produce opinions where the projected probabilities and the variance are always analytically correct.
Different logic formulas that traditionally are equivalent in propositional logic do not necessarily have equal opinions. For example
Subjective logic gives very efficient computation of mathematically complex models. This is possible by approximating the analytically correct functions whenever needed. While it is relatively simple to analytically multiply two Beta PDFs in the form of a joint Beta PDF, anything more complex than that quickly becomes intractable. When combining two Beta PDFs with some operator/connective, the analytical result is not always a Beta PDF and can involve hypergeometric series. In such cases, subjective logic always approximates the result as an opinion that is equivalent to a Beta PDF.
Applications
Subjective logic is applicable when the situation to be analysed is characterised by considerable uncertainty and incomplete knowledge. In this way, subjective logic becomes a probabilistic logic for uncertain probabilities. The advantage is that uncertainty is preserved throughout the analysis and is made explicit in the results so that it is possible to distinguish between certain and uncertain conclusions.
The modelling of trust networks and Bayesian networks are typical applications of subjective logic.
Subjective trust networks
Subjective trust networks can be modelled with a combination of the transitivity and fusion operators. Let
The indices 1, 2 and 3 indicate the chronological order in which the trust edges and advices are formed. Thus, given the set of trust edges with index 1, the origin trustor
Trust networks can express the reliability of information sources, and can be used to determine subjective opinions about variables that the sources provide information about.
Subjective Bayesian networks
In the Bayesian network below,
The deduced opinion is computed as
Subjective networks
The combination of a subjective trust network and a subjective Bayesian network is a subjective network. The subjective trust network can be used to obtain from various sources the opinions to be used as input opinions to the subjective Bayesian network, as illustrated in the figure below.
Traditional Bayesian network typically do not take into account the reliability of the sources. In subjective networks, the trust in sources is explicitly taken into account.