![]() | ||
A sex-determination system is a biological system that determines the development of sexual characteristics in an organism. Most organisms that create their offspring using sexual reproduction have two sexes. Occasionally, there are hermaphrodites in place of one or both sexes. There are also some species that are only one sex due to parthenogenesis, the act of a female reproducing without fertilization.
Contents
- XXXY sex chromosomes
- Y Centered Sex Determination
- X Centered Sex Determination
- Other Variants of XXXY Sex Determination
- XXX0 sex chromosomes
- ZW sex chromosomes
- UV sex chromosomes
- Haplodiploidy
- Origin of sex chromosomes
- References
In many species, sex determination is genetic: males and females have different alleles or even different genes that specify their sexual morphology. In animals this is often accompanied by chromosomal differences, generally through combinations of XY, ZW, XO, ZO chromosomes, or haplodiploidy. The sexual differentiation is generally triggered by a main gene (a "sex locus"), with a multitude of other genes following in a domino effect.
In other cases, sex is determined by environmental variables (such as temperature) or social variables (e.g. the size of an organism relative to other members of its population).
Some species do not have a fixed sex, and instead change sex based on certain cues. The details of some sex-determination systems are not yet fully understood.
XX/XY sex chromosomes
The XX/XY sex-determination system is the most familiar, as it is found in humans. The XX/XY system is found in most other mammals, as well as some insects. In this system, most females have two of the same kind of sex chromosome (XX), while most males have two distinct sex chromosomes (XY). The X and Y sex chromosomes are different in shape and size from each other, unlike the rest of the chromosomes (autosomes), and are sometimes called allosomes. In some species, such as humans, organisms remain sex indifferent for a time after they're created; in others, however, such as fruit flies, sexual differentiation occurs as soon as the egg is fertilized.
Y-Centered Sex Determination
Some species (including humans) have a gene SRY on the Y chromosome that determines maleness. Members of SRY-reliant species can have uncommon XY chromosomal combinations such as XXY and still live. Human sex is determined by the presence or absence of a Y chromosome with a functional SRY gene. Once the SRY gene is activated, cells create testosterone and anti-müllerian hormone which typically ensures the development of a single, male reproductive system. In typical XX embryos, cells secrete estrogen, which drives the body down the female pathway.
In Y-centered sex determination, the SRY gene is not the only gene to have an influence on sex. Despite the fact that SRY seems to be the main gene in determining male characteristics, it requires the action of multiple genes to develop testes. In XY mice, lack of the gene DAX1 on the X chromosome results in sterility, but in humans it causes adrenal hypoplasia congenita. However, when an extra DAX1 gene is placed on the X, the result is a female, despite the existence of SRY. Also, even when there are normal sex chromosomes in XX females, duplication or expression of SOX9 causes testes to develop. Gradual sex reversal in developed mice can also occur when the gene FOXL2 is removed from females. Even though the gene DMRT1 is used by birds as their sex locus, species who have XY chromosomes also rely upon DMRT1, contained on chromosome 9, for sexual differentiation at some point in their formation.
X-Centered Sex Determination
Some species (such as the fruit fly) use the presence of two X chromosomes to determine femaleness. Because the fruit fly, as well as other species, use the number of Xs to determine sex, they are nonviable with an extra X.
Other Variants of XX/XY Sex Determination
XX/X0 sex chromosomes
In this variant of the XY system, females have two copies of the sex chromosome (XX) but males have only one (X0). The 0 denotes the absence of a second sex chromosome. Generally in this method, the sex is determined by amount of genes expressed across the two chromosomes. This system is observed in a number of insects, including the grasshoppers and crickets of order Orthoptera and in cockroaches (order Blattodea). A small number of mammals also lack a Y chromosome. These include the Amami spiny rat (Tokudaia osimensis) and the Tokunoshima spiny rat (Tokudaia tokunoshimensis) and Sorex araneus, a shrew species. Transcaucasian mole voles (Ellobius lutescens) also have a form of XO determination, in which both sexes lack a second sex chromosome. The mechanism of sex determination is not yet understood.
The nematode C. elegans is male with one sex chromosome (X0); with a pair of chromosomes (XX) it is a hermaphrodite. Its main sex gene is XOL, which encodes XOL-1 and also controls the expression of the genes TRA-2 and HER-1. These genes reduce male gene activation and increase it, respectively.
ZW sex chromosomes
The ZW sex-determination system is found in birds, some reptiles, and some insects and other organisms. The ZW sex-determination system is reversed compared to the XY system: females have two different kinds of chromosomes (ZW), and males have two of the same kind of chromosomes (ZZ). In the chicken, this was found to be dependent on the expression of DMRT1. In birds, the genes FET1 and ASW are found on the W chromosome for females, similar to how the Y chromosome contains SRY. However, not all species depend upon the W for their sex. For example, there are moths and butterflies that are ZW, but some have been found female with ZO, as well as female with ZZW. Also, while mammals inactivate one of their extra X chromosomes when female, it appears that in the case of Lepidoptera, the males produce double the normal amount of enzymes, due to having two Z's. Because the use of ZW sex determination is varied, it is still unknown how exactly most species determine their sex. However, reportedly, the silkworm Bombyx mori uses a single female-specific piRNA as the primary determiner of sex. Despite the similarities between ZW and XY, the sex chromosomes do not line up correctly and evolved separately. In the case of the chicken, their Z chromosome is more similar to humans' autosome 9. The chicken's Z chromosome also seems to be related to the X chromosomes of the platypus. When a ZW species, such as the Komodo dragon, reproduces parthenogenetically, usually only males are produced. This is due to the fact that the haploid eggs double their chromosomes, resulting in ZZ or WW. The ZZ become males, but the WW are not viable and are not brought to term.
UV sex chromosomes
In some Bryophyte and some algae species, the gametophyte stage of the life cycle, rather than being hermaphrodite, occurs as separate male or female individuals that produce male and female gametes respectively. When meiosis occurs in the sporophyte generation of the life cycle, the sex chromosomes known as U and V assort in spores that carry either the U chromosome and give rise to female gametophytes, or the V chromosome and give rise to male gametophytes.
Haplodiploidy
Haplodiploidy is found in insects belonging to Hymenoptera, such as ants and bees. Unfertilized eggs develop into haploid individuals, which are the males. Diploid individuals are generally female but may be sterile males. Males cannot have sons or fathers. If a queen bee mates with one drone, her daughters share ¾ of their genes with each other, not ½ as in the XY and ZW systems. This may be significant for the development of eusociality, as it increases the significance of kin selection, but it is debated. Most females in the Hymenoptera order can decide the sex of their offspring by holding received sperm in their spermatheca and either releasing it into their oviduct or not. This allows them to create more workers, depending on the status of the colony.
Origin of sex chromosomes
The accepted hypothesis of XY and ZW sex chromosome evolution is that they evolved at the same time, in two different branches. However, there is some evidence to suggest that there could have been transitions between ZW and XY, such as in Xiphophorus maculatus, which have both ZW and XY systems in the same population, despite the fact that ZW and XY have different gene locations. A recent theoretical model raises the possibility of both transitions between the XY/XX and ZZ/ZW system and environmental sex determination The platypus' genes also back up the possible evolutionary link between XY and ZW, because they have the DMRT1 gene possessed by birds on their X chromosomes. Regardless, XY and ZW follow a similar route. All sex chromosomes started out as an original autosome of an original amniote that relied upon temperature to determine the sex of offspring. After the mammals separated, the branch further split into Lepidosauria and Archosauromorpha. These two groups both evolved the ZW system separately, as evidenced by the existence of different sex chromosomal locations. In mammals, one of the autosome pair, now Y, mutated its SOX3 gene into the SRY gene, causing that chromosome to designate sex. After this mutation, the SRY-containing chromosome inverted and was no longer completely homologous with its partner. The regions of the X and Y chromosomes that are still homologous to one another are known as the pseudoautosomal region. Once it inverted, the Y chromosome became unable to remedy deleterious mutations, and thus degenerated. There is some concern that the Y chromosome will shrink further and stop functioning in ten million years: but the Y chromosome has been strictly conserved after its initial rapid gene loss.
There are some species, such as the medaka fish, that evolved sex chromosomes separately; their Y chromosome never inverted and can still swap genes with the X. These species are still in an early phase of evolution with regard to their sex chromosomes. Because the Y does not have male-specific genes and can interact with the X, XY and YY females can be formed as well as XX males.