In the mathematical area of bifurcation theory a saddle-node bifurcation, tangential bifurcation or fold bifurcation is a local bifurcation in which two fixed points (or equilibria) of a dynamical system collide and annihilate each other. The term 'saddle-node bifurcation' is most often used in reference to continuous dynamical systems. In discrete dynamical systems, the same bifurcation is often instead called a fold bifurcation. Another name is blue skies bifurcation in reference to the sudden creation of two fixed points.
Contents
If the phase space is one-dimensional, one of the equilibrium points is unstable (the saddle), while the other is stable (the node).
Saddle-node bifurcations may be associated with hysteresis loops and catastrophes.
Normal form
A typical example of a differential equation with a saddle-node bifurcation is:
Here
In fact, this is a normal form of a saddle-node bifurcation. A scalar differential equation
Example in two dimensions
An example of a saddle-node bifurcation in two dimensions occurs in the two-dimensional dynamical system:
As can be seen by the animation obtained by plotting phase portraits by varying the parameter
A saddle-node bifurcation also occurs in the consumer equation (see transcritical bifurcation) if the consumption term is changed from
Other examples are in modelling biological switches (see a tutorial for the computational techniques in modelling biological switches with an easy to understand synthetic toggle switch that demonstrates the bistability and hysteresis behavior showing the saddle-nodes or tipping points).