![]() | ||
In mathematics, the radius of convergence of a power series is the radius of the largest disk in which the series converges. It is either a non-negative real number or
Contents
- Definition
- Finding the radius of convergence
- Theoretical radius
- Practical estimation of radius in the case of real coefficients
- Radius of convergence in complex analysis
- A simple example
- A more complicated example
- Convergence on the boundary
- Comments on rate of convergence
- Abscissa of convergence of a Dirichlet series
- References
Definition
For a power series ƒ defined as:
where
a is a complex constant, the center of the disk of convergence,cn is the nth complex coefficient, andz is a complex variable.The radius of convergence r is a nonnegative real number or
and diverges if
Some may prefer an alternative definition, as existence is obvious:
On the boundary, that is, where |z − a| = r, the behavior of the power series may be complicated, and the series may converge for some values of z and diverge for others. The radius of convergence is infinite if the series converges for all complex numbers z.
Finding the radius of convergence
Two cases arise. The first case is theoretical: when you know all the coefficients
Theoretical radius
The radius of convergence can be found by applying the root test to the terms of the series. The root test uses the number
"lim sup" denotes the limit superior. The root test states that the series converges if C < 1 and diverges if C > 1. It follows that the power series converges if the distance from z to the center a is less than
and diverges if the distance exceeds that number; this statement is the Cauchy–Hadamard theorem. Note that r = 1/0 is interpreted as an infinite radius, meaning that ƒ is an entire function.
The limit involved in the ratio test is usually easier to compute, and when that limit exists, it shows that the radius of convergence is finite.
This is shown as follows. The ratio test says the series converges if
That is equivalent to
Practical estimation of radius in the case of real coefficients
Usually, in scientific applications, only a finite number of coefficients
The intercept with
Radius of convergence in complex analysis
A power series with a positive radius of convergence can be made into a holomorphic function by taking its argument to be a complex variable. The radius of convergence can be characterized by the following theorem:
The radius of convergence of a power series ƒ centered on a point a is equal to the distance from a to the nearest point where ƒ cannot be defined in a way that makes it holomorphic.The set of all points whose distance to a is strictly less than the radius of convergence is called the disk of convergence.
The nearest point means the nearest point in the complex plane, not necessarily on the real line, even if the center and all coefficients are real. For example, the function
has no singularities on the real line, since
The root test shows that its radius of convergence is 1. In accordance with this, the function ƒ(z) has singularities at ±i, which are at a distance 1 from 0.
For a proof of this theorem, see analyticity of holomorphic functions.
A simple example
The arctangent function of trigonometry can be expanded in a power series familiar to calculus students:
It is easy to apply the root test in this case to find that the radius of convergence is 1.
A more complicated example
Consider this power series:
where the rational numbers Bn are the Bernoulli numbers. It may be cumbersome to try to apply the ratio test to find the radius of convergence of this series. But the theorem of complex analysis stated above quickly solves the problem. At z = 0, there is in effect no singularity since the singularity is removable. The only non-removable singularities are therefore located at the other points where the denominator is zero. We solve
by recalling that if z = x + iy and e iy = cos(y) + i sin(y) then
and then take x and y to be real. Since y is real, the absolute value of cos(y) + i sin(y) is necessarily 1. Therefore, the absolute value of e z can be 1 only if e x is 1; since x is real, that happens only if x = 0. Therefore z is pure imaginary and cos(y) + i sin(y) = 1. Since y is real, that happens only if cos(y) = 1 and sin(y) = 0, so that y is an integer multiple of 2π. Consequently the singular points of this function occur at
z = a nonzero integer multiple of 2πi.The singularities nearest 0, which is the center of the power series expansion, are at ±2πi. The distance from the center to either of those points is 2π, so the radius of convergence is 2π.
Convergence on the boundary
If the power series is expanded around the point a and the radius of convergence is r, then the set of all points z such that |z − a| = r is a circle called the boundary of the disk of convergence. A power series may diverge at every point on the boundary, or diverge on some points and converge at other points, or converge at all the points on the boundary. Furthermore, even if the series converges everywhere on the boundary (even uniformly), it does not necessarily converge absolutely.
Example 1: The power series for the function ƒ(z) = 1/(1 − z), expanded around z = 0, which is simply
has radius of convergence 1 and diverges at every point on the boundary.
Example 2: The power series for g(z) = −ln(1 − z), expanded around z = 0, which is
has radius of convergence 1, and diverges for z = 1 but converges for all other points on the boundary. The function ƒ(z) of Example 1 is the derivative of g(z).
Example 3: The power series
has radius of convergence 1 and converges everywhere on the boundary absolutely. If h is the function represented by this series on the unit disk, then the derivative of h(z) is equal to g(z)/z with g of Example 2. It turns out that h(z) is the dilogarithm function.
Example 4: The power series
has radius of convergence 1 and converges uniformly on the entire boundary {|z| = 1}, but does not converge absolutely on the boundary.
Comments on rate of convergence
If we expand the function
around the point x = 0, we find out that the radius of convergence of this series is
So the fastest convergence of a power series expansion is at the center, and as one moves away from the center of convergence, the rate of convergence slows down until you reach the boundary (if it exists) and cross over, in which case the series will diverge.
Abscissa of convergence of a Dirichlet series
An analogous concept is the abscissa of convergence of a Dirichlet series
Such a series converges if the real part of s is greater than a particular number depending on the coefficients an: the abscissa of convergence.