Quadrature-based moment methods (QBMM) are a class of computational fluid dynamics (CFD) methods for solving Kinetic theory and is optimal for simulating phases such as rarefied gases or dispersed phases of a multiphase flow. The smallest "particle" entities which are tracked may be molecules of a single phase or granular "particles" such as aerosols, droplets, bubbles, precipitates, powders, dust, soot, etc. Moments of the Boltzmann equation are solved to predict the phase behavior as a continuous (Eulerian) medium, and is applicable for arbitrary Knudsen number
Contents
Method
QBMM is a relatively new simulation technique for granular systems and has attracted interest from researchers in computational physics, chemistry, and engineering. QBMM is similar to traditional CFD methods, which solve the conservation equations of macroscopic properties (i.e., mass, momentum, and energy) numerically, but QBMM accomplishes this by modeling the fluid as consisting of fictive particles, or nodes, that constitute a discretized PDF. A node consists of an abscissa/weight pair and the weight defines the probability of finding a particle that has the value of its abscissa. This quadrature approximation may also be adaptive, meaning that the number of nodes can increase/decrease to accommodate appropriately complex/simple PDF's. Due to its statistical nature, QBMM has several advantages over other conventional Lagrangian methods, especially in dealing with complex boundaries, incorporating microscopic interactions (such as collisions), parallelization of the algorithm, and computational costs being largely independent of particle population. The numerical methods for solving the system of partial differential equations can be interpreted as the propagation (with a flux term) and interactions (source terms) of fictitious particle probabilities in an Eulerian framework.
Implementations
QBMM is a family of methods encompassing a variety of models, some of which are designed specifically to handle PDF's of passive variables, and others more complex, capable of multidimensional PDF's of active variables (such as velocity). Note that the full representation of the PDF is
The applicability of these methods depends upon which particle parameters are important (velocity, diameter, temperature, etc.), and importantly upon two values of the phase:
QMOM
One of the earliest applications of QBMM was the Quadrature Method of Moments (QMOM) by McGraw in 1997. This method was used mainly for aerosol sprays and droplets by tracking their diameters through phenomenon such as breakage, coalescence, evaporation, etc.
DQMOM
Direct QMOM (DQMOM) is a mathematical simplification of QMOM that works best for dispersed phases with low Stokes numbers. DQMOM is a very efficient model because the weights and abscissas appear directly in the transport equations alleviating any need for moment construction and inversion. When dealing with low inertia particles where tracking few passive variables is of concern, DQMOM is very advantageous; however, because a large set of unknowns (abscissas and weights) is solved simultaneously, the matrix inversions cannot guaranteed realizable results in some circumstances, even with expensive iterative processes.
CQMOM
In 2011 the Conditional QMOM (CQMOM) method was published by Yuan and Fox and this comprehensive method is applicable to modeling very general problems by tracking moments of the PDF,
Polykinetic
CQMOM has the ability to model a fully 3D velocity PDF, known as a polykinetic approach where
The specialized Boltzmann Equation for
where
where
where
where
EQMOM
Extended QMOM (EQMOM) gives the quadrature representation of the PDF more flexibility. Instead of relying solely on Dirac delta functions as the basis functions, it uses a Gaussian distribution, thus allowing more complex PDF's to be represented with fewer quadrature nodes.
Limitations
Despite the increasing popularity of QBMM in solving the kinetic equations of granular gases, this novel approach has some limitations. At present, CQMOM's computational costs are significantly higher than that of the N-S Equations when