![]() | ||
In linear algebra, a QR decomposition (also called a QR factorization) of a matrix is a decomposition of a matrix A into a product A = QR of an orthogonal matrix Q and an upper triangular matrix R. QR decomposition is often used to solve the linear least squares problem, and is the basis for a particular eigenvalue algorithm, the QR algorithm.
Contents
- Square matrix
- Rectangular matrix
- QL RQ and LQ decompositions
- Computing the QR decomposition
- Using the GramSchmidt process
- Example
- Relation to RQ decomposition
- Advantages and disadvantages
- Using Householder reflections
- Using Givens rotations
- Connection to a determinant or a product of eigenvalues
- Column pivoting
- Using for solution to linear inverse problems
- Generalizations
- References
Square matrix
Any real square matrix A may be decomposed as
where Q is an orthogonal matrix (its columns are orthogonal unit vectors meaning QTQ = I) and R is an upper triangular matrix (also called right triangular matrix). If A is invertible, then the factorization is unique if we require that the diagonal elements of R be positive.
If instead A is a complex square matrix, then there is a decomposition A = QR where Q is a unitary matrix (so Q*Q = I).
If A has n linearly independent columns, then the first n columns of Q form an orthonormal basis for the column space of A. More generally, the first k columns of Q form an orthonormal basis for the span of the first k columns of A for any 1 ≤ k ≤ n. The fact that any column k of A only depends on the first k columns of Q is responsible for the triangular form of R.
Rectangular matrix
More generally, we can factor a complex m×n matrix A, with m ≥ n, as the product of an m×m unitary matrix Q and an m×n upper triangular matrix R. As the bottom (m−n) rows of an m×n upper triangular matrix consist entirely of zeroes, it is often useful to partition R, or both R and Q:
where R1 is an n×n upper triangular matrix, 0 is an (m − n)×n zero matrix, Q1 is m×n, Q2 is m×(m − n), and Q1 and Q2 both have orthogonal columns.
Golub & Van Loan (1996, §5.2) call Q1R1 the thin QR factorization of A; Trefethen and Bau call this the reduced QR factorization. If A is of full rank n and we require that the diagonal elements of R1 are positive then R1 and Q1 are unique, but in general Q2 is not. R1 is then equal to the upper triangular factor of the Cholesky decomposition of A* A (= ATA if A is real).
QL, RQ and LQ decompositions
Analogously, we can define QL, RQ, and LQ decompositions, with L being a lower triangular matrix.
Computing the QR decomposition
There are several methods for actually computing the QR decomposition, such as by means of the Gram–Schmidt process, Householder transformations, or Givens rotations. Each has a number of advantages and disadvantages.
Using the Gram–Schmidt process
Consider the Gram–Schmidt process applied to the columns of the full column rank matrix
Define the projection:
then:
We can now express the
where
where:
and
Example
Consider the decomposition of
Recall that an orthonormal matrix
Then, we can calculate
Thus, we have
Relation to RQ decomposition
The RQ decomposition transforms a matrix A into the product of an upper triangular matrix R (also known as right-triangular) and an orthogonal matrix Q. The only difference from QR decomposition is the order of these matrices.
QR decomposition is Gram–Schmidt orthogonalization of columns of A, started from the first column.
RQ decomposition is Gram–Schmidt orthogonalization of rows of A, started from the last row.
Advantages and disadvantages
The Gram-Schmidt process is inherently numerically unstable. While the application of the projections has an appealing geometric analogy to orthogonalisation, the orthogonalisation itself is prone to numerical error. A significant advantage however is the ease of implementation, which makes this a useful algorithm to use for prototyping if a pre-built linear algebra library is unavailable.
Using Householder reflections
A Householder reflection (or Householder transformation) is a transformation that takes a vector and reflects it about some plane or hyperplane. We can use this operation to calculate the QR factorization of an m-by-n matrix
Q can be used to reflect a vector in such a way that all coordinates but one disappear.
Let
(Stoer & Bulirsch 2002, p. 225) and substitute transposition by conjugate transposition in the construction of Q below.
Then, where
Or, if
This can be used to gradually transform an m-by-n matrix A to upper triangular form. First, we multiply A with the Householder matrix Q1 we obtain when we choose the first matrix column for x. This results in a matrix Q1A with zeros in the left column (except for the first row).
This can be repeated for A′ (obtained from Q1A by deleting the first row and first column), resulting in a Householder matrix Q′2. Note that Q′2 is smaller than Q1. Since we want it really to operate on Q1A instead of A′ we need to expand it to the upper left, filling in a 1, or in general:
After
is an upper triangular matrix. So, with
This method has greater numerical stability than the Gram–Schmidt method above.
The following table gives the number of operations in the k-th step of the QR-decomposition by the Householder transformation, assuming a square matrix with size n.
Summing these numbers over the n − 1 steps (for a square matrix of size n), the complexity of the algorithm (in terms of floating point multiplications) is given by
Example
Let us calculate the decomposition of
First, we need to find a reflection that transforms the first column of matrix A, vector
Now,
and
Here,
Therefore
Now observe:
so we already have almost a triangular matrix. We only need to zero the (3, 2) entry.
Take the (1, 1) minor, and then apply the process again to
By the same method as above, we obtain the matrix of the Householder transformation
after performing a direct sum with 1 to make sure the next step in the process works properly.
Now, we find
Then
The matrix Q is orthogonal and R is upper triangular, so A = QR is the required QR-decomposition.
Advantages and disadvantages
The use of Householder transformations is inherently the most simple of the numerically stable QR decomposition algorithms due to the use of reflections as the mechanism for producing zeroes in the R matrix. However, the Householder reflection algorithm is bandwidth heavy and not parallelisable, as every reflection that produces a new zero element changes the entirety of both Q and R matrices.
Using Givens rotations
QR decompositions can also be computed with a series of Givens rotations. Each rotation zeroes an element in the subdiagonal of the matrix, forming the R matrix. The concatenation of all the Givens rotations forms the orthogonal Q matrix.
In practice, Givens rotations are not actually performed by building a whole matrix and doing a matrix multiplication. A Givens rotation procedure is used instead which does the equivalent of the sparse Givens matrix multiplication, without the extra work of handling the sparse elements. The Givens rotation procedure is useful in situations where only a relatively few off diagonal elements need to be zeroed, and is more easily parallelized than Householder transformations.
Example
Let us calculate the decomposition of
First, we need to form a rotation matrix that will zero the lowermost left element,
And the result of
We can similarly form Givens matrices
Advantages and disadvantages
The QR decomposition via Givens rotations is the most involved to implement, as the ordering of the rows required to fully exploit the algorithm are not trivial to determine. However, it has a significant advantage in that each new zero element affects only the row with the element to be zeroed and the row above. This makes the Givens rotation algorithm more bandwidth efficient and parallelisable, in contrast with the Householder reflection technique.
Connection to a determinant or a product of eigenvalues
We can use QR decomposition to find the absolute value of the determinant of a square matrix. Suppose a matrix is decomposed as
Since Q is unitary,
where
Furthermore, because the determinant equals the product of the eigenvalues, we have
where
We can extend the above properties to non-square complex matrix
Suppose a QR decomposition for a non-square matrix A:
where
From the properties of SVD and determinant of matrix, we have
where
Note that the singular values of
In conclusion, QR decomposition can be used efficiently to calculate the product of the eigenvalues or singular values of a matrix.
Column pivoting
QR decomposition with column pivoting introduces a permutation matrix P:
Column pivoting is useful when A is (nearly) rank deficient, or is suspected of being so. It can also improve numerical accuracy. P is usually chosen so that the diagonal elements of R are non-increasing:
Using for solution to linear inverse problems
Compared to the direct matrix inverse, inverse solutions using QR decomposition are more numerically stable as evidenced by their reduced condition numbers [Parker, Geophysical Inverse Theory, Ch1.13].
To solve the underdetermined (
To find a solution,
Generalizations
Iwasawa decomposition generalizes QR decomposition to semisimple Lie groups.