In mathematics, the Iwasawa decomposition (aka KAN from its expression) of a semisimple Lie group generalises the way a square real matrix can be written as a product of an orthogonal matrix and an upper triangular matrix (a consequence of Gram–Schmidt orthogonalization). It is named after Kenkichi Iwasawa, the Japanese mathematician who developed this method.
Contents
Definition
Then the Iwasawa decomposition of
and the Iwasawa decomposition of G is
The dimension of A (or equivalently of
Iwasawa decompositions also hold for some disconnected semisimple groups G, where K becomes a (disconnected) maximal compact subgroup provided the center of G is finite.
The restricted root space decomposition is
where
Examples
If G=SLn(R), then we can take K to be the orthogonal matrices, A to be the positive diagonal matrices, and N to be the unipotent group consisting of upper triangular matrices with 1s on the diagonal.
Non-Archimedean Iwasawa decomposition
There is an analog to the above Iwasawa decomposition for a non-Archimedean field