![]() | ||
Projectile motion is a form of motion in which an object or particle i.e. called a projectile is thrown near the Earth's surface, and it moves along a curved path under the action of gravity only. The implication here is that air resistance is negligible, or in any case is being neglected in all of these equations. The only force of significance that acts on the object is gravity, which acts downward to cause a downward acceleration. Because of the object's inertia, no external horizontal force is needed to maintain the horizontal velocity of the object.
Contents
- The initial velocity
- Kinematic quantities of projectile motion
- Acceleration
- Velocity
- Displacement
- Time of flight or total time of the whole journey
- Maximum height of projectile
- Relation between horizontal range and maximum height
- Proof
- Maximum distance of projectile
- Application of the work energy theorem
- References
The initial velocity
Let the projectile be launched with an initial velocity
The components
Kinematic quantities of projectile motion
In projectile motion, the horizontal motion and the vertical motion are independent of each other; that is, neither motion affects the other. This is the principle of compound motion established by Galileo in 1638.
Acceleration
Since there is only acceleration in the vertical direction, the velocity in the horizontal direction is constant, being equal to
Velocity
The horizontal component of the velocity of the object remains unchanged throughout the motion. The downward vertical component of the velocity increases linearly, because the acceleration due to gravity is constant. The accelerations in the
The magnitude of the velocity (under the Pythagorean theorem, also known as the triangle law):
Displacement
At any time
The magnitude of the displacement is:
Consider the equations,
If t is eliminated between these two equations the following equation is obtained:
Since
in which
If the projectile's position (x,y) and launch angle (θ or α) are known, the initial velocity can be found solving for
Time of flight or total time of the whole journey
The total time
After the flight, the projectile returns to the horizontal axis (x-axis), so y=0
Note that we have neglected air resistance on the projectile.
Maximum height of projectile
The greatest height that the object will reach is known as the peak of the object's motion. The increase in height will last until
Time to reach the maximum height(h):
From the vertical displacement of the maximum height of projectile:
Relation between horizontal range and maximum height
The relation between the range
Proof
Maximum distance of projectile
It is important to note that the range and the maximum height of the projectile does not depend upon its mass. Hence range and maximum height are equal for all bodies that are thrown with the same velocity and direction.
The horizontal range d of the projectile is the horizontal distance it has traveled when it returns to its initial height (y = 0).
Time to reach ground:
From the horizontal displacement the maximum distance of projectile:
so
Note that
which necessarily corresponds to
or
Application of the work energy theorem
According to the work-energy theorem the vertical component of velocity is: