Kalpana Kalpana (Editor)

Personal health record

Updated on
Edit
Like
Comment
Share on FacebookTweet on TwitterShare on LinkedInShare on Reddit

A personal health record, or PHR, is a health record where health data and information related to the care of a patient is maintained by the patient. This stands in contrast to the more widely used electronic medical record, which is operated by institutions (such as hospitals) and contains data entered by clinicians or billing data to support insurance claims. The intention of a PHR is to provide a complete and accurate summary of an individual's medical history which is accessible online. The health data on a PHR might include patient-reported outcome data, lab results, data from devices such as wireless electronic weighing scales or collected passively from a smartphone.

Contents

Definition

The term "personal health record" is not new. The term was used as early as June 1978, and in 1956, reference was made to a "personal health log." The term "PHR" may be applied to both paper-based and computerized systems; current usage usually implies an electronic application used to collect and store health data. In the early 2000s, healthcare industry organizations began to propose formal definitions of the term, for example:

The Personal Health Record (PHR) is an Internet-based set of tools that allows people to access and coordinate their lifelong health information and make appropriate parts of it available to those who need it. PHRs offer an integrated and comprehensive view of health information, including information people generate themselves such as symptoms and medication use, information from doctors such as diagnoses and test results, and information from their pharmacies and insurance companies.

The personal health record (PHR) is an electronic, universally available, lifelong resource of health information needed by individuals to make health decisions. Individuals own and manage the information in the PHR, which comes from healthcare providers and the individual. The PHR is maintained in a secure and private environment, with the individual determining rights of access. The PHR is separate from and does not replace the legal record of any provider.

The industry model personal health record (PHR) is a private, secure web-based tool maintained by an insurer that contains claims and administrative information. PHRs may also include information that is entered by consumers themselves, as well as data from other sources such as pharmacies, labs, and care providers. PHRs enable individual patients and their designated caregivers to view and manage health information and play a greater role in their own health care.

It is important to note that PHRs are not the same as electronic health records (EHRs) or electronic medical records (EMRs), which are software systems designed for use by health care providers. Like the data recorded in paper-based medical records, the data in EHRs are legally mandated notes on the care provided by clinicians to patients. There is no legal mandate that compels a consumer or patient to store her personal health information in a PHR.

PHRs can contain a diverse range of data, including but not limited to:

  • allergies and adverse drug reactions
  • chronic diseases
  • family history
  • illnesses and hospitalizations
  • imaging reports (e.g. X-ray)
  • laboratory test results
  • medications and dosing
  • prescription record
  • surgeries and other procedures
  • vaccinations
  • and observations of daily living (ODLs)
  • There are two methods by which data can arrive in a PHR. A patient may enter it directly, either by typing into fields or uploading/transmitting data from a file or another website. The second is when the PHR is tethered to an electronic health record, which automatically updates the PHR. Not all PHRs have the same capabilities, and individual PHRs may support one or all of these methods.

    In addition to storing an individual's personal health information, some PHRs provide added-value services such as drug-drug interaction checking, electronic messaging between patients and providers, managing appointments, and reminders.

    Benefits

    PHRs grant patients access to a wide range of health information sources, best medical practices and health knowledge. All of an individual’s medical records are stored in one place instead of paper-based files in various doctors’ offices. Upon encountering a medical condition, a patient’s health information is only a few clicks away.

    Moreover, PHRs can benefit clinicians. PHRs offer patients the opportunity to submit their data to their clinicians' EHRs. This helps clinicians make better treatment decisions by providing more continuous data.

    PHRs have the potential to help analyze an individual’s health profile and identify health threats and improvement opportunities based on an analysis of drug interaction, current best medical practices, gaps in current medical care plans, and identification of medical errors. Patient illnesses can be tracked in conjunction with healthcare providers and early interventions can be promoted upon encountering deviation of health status. PHRs also make it easier for clinicians to care for their patients by facilitating continuous communication as opposed to episodic. Eliminating communication barriers and allowing documentation flow between patients and clinicians in a timely fashion can save time consumed by face-to-face meetings and telephone communication. Improved communication can also ease the process for patients and caregivers to ask questions, to set up appointments, to request refills and referrals, and to report problems. Additionally, in the case of an emergency a PHR can quickly provide critical information to proper diagnosis or treatment.

    Architecture

    Like other health information technology, PHR architecture of has three main components:

    Data
    The information collected, stored, analyzed, and exchanged by the PHR. Examples: medical history, laboratory results, imaging studies, medications
    Infrastructure
    The platform that handles data storage, processing, and exchange. Examples: stand-alone software programs or websites, provider- or payer-connected (tethered) websites
    Applications
    The information exchange, data analysis, and content delivery capabilities of the system. Examples: scheduling appointments, medication refill or renewal, decision aids, and patient education materials.

    Various architectural models have different costs and benefits. Likewise, stand-alone, provider-tethered, and payer-tethered PHRs have different advantages and disadvantages for patients related to their individual circumstances. Such differences are among the priority areas in PHR research. As PHRs may play key role in advancing health information exchange, interoperability with other health IT systems is an important consideration for PHR architecture. If PHRs serve only as a repository for an individual’s health information, it is unlikely that individuals who are not highly motivated will maintain their health records and find PHRs to be useful.

    Delivery platforms

    One of the principal distinguishing features of a PHR is the platform by which it is delivered. The types of platforms include: paper, electronic device, and web.

    Paper

    Personal health information is recorded and stored in paper format. Printed laboratory reports, copies of clinic notes, and health histories created by the individual may be parts of a paper-based PHR. This method is low cost, reliable, and accessible without the need for a computer or any other hardware. Probably the most successful paper PHR is the hand-held pregnancy record, developed in Milton Keynes in the mid-1980s and now in use throughout the United Kingdom. These include the Scottish Woman-Held Maternity Record, All Wales Maternity Record, and Perinatal Institute notes.

    Paper-based PHRs may be difficult to locate, update, and share with others. Paper-based PHRs are subject to physical loss and damage, such as can occur during a natural disaster. Paper records can also be printed from most electronic PHRs. However, Fawdry et al. have shown that paper records are extremely flexible and do have distinct advantages over rigid electronic systems.

    Electronic devices

    Personal health information is recorded and stored in personal computer-based software that may have the capability to print, backup, encrypt, and import data from other sources such as a hospital laboratory. The most basic form of a PC-based PHR would be a health history created in a word-processing program. The health history created in this way can be printed, copied, and shared with anyone with a compatible word processor.

    PHR software can provide more sophisticated features such as data encryption, data importation, and data sharing with health care providers. Some PHR products allow the copying of health records to a mass-storage device such as a CD-ROM, DVD, smart card, or USB flash drive.

    PC-based PHRs are subject to physical loss and damage of the personal computer and the data that it contains. Some other methods of device solution may entail cards with embedded chips containing health information that may or may not be linked to a personal computer application or a web solution.

    Web applications

    Web-based PHR solutions are essentially the same as electronic device PHR solutions, however, web-based solutions have the advantage of being easily integrated with other services. For example, some solutions allow for import of medical data from external sources. Solutions including HealthVault, and PatientsLikeMe allow data to be shared with other applications or specific people. Mobile solutions often integrate themselves with web solutions and use the web-based solution as the platform.

    A large number of companies have emerged to provide consumers the opportunity to develop online PHRs. Some have been developed by non-profit organizations, while others have been developed by commercial ventures. These web-based applications allow users to directly enter their information such as diagnosis, medications, laboratory tests, immunizations and other data associated with their health. They generate records that can be displayed for review or transmitted to authorized receivers.

    Despite the need for PHRs and the availability of various online PHR providers, there has not been wide adoption of PHR services. In fact, Google, being among the most innovative companies in the world, discontinued its PHR service called Google Health on January 12, 2012. The reason cited for shutting down Google Health was that the service did not translate from its limited usage into widespread usage in the daily health routines of millions of people. Surveys of web-based services have found wide variations in functions between services and only limited data on efficacy and safety concerns. One analyst, describing the public's reluctance to adopt the services, called PHRs "a technology in search of a market."

    An emerging standard from HL7, Fast Healthcare Interoperability Resources (FHIR), is designed to make it easier for developers of personal health record applications to access relevant medical records.

    EHRs, PHRs, patient portals and UHRs

    The terms electronic health records, personal health records, and patient portals are not always used correctly. The generally agreed upon definition of these terms relates mainly to the ownership of the data. Once data is in a PHR it usually owned and controlled by the patient. Most EHRs, however, are the property of the provider, although the content can be co-created by both the provider and patient. A patient has a legal right in most states to request their healthcare data and under recent USA legislation those providers using a certified EHR will be required to provide an electronic copy as well. In the UK, according to the governments's information strategy for the NHS every primary care practice in England will have to offer patients online access to their care records by 2015. In 2012, only 1% did so. Electronic health records and electronic medical records contain clinical data created by and for health professionals in the course of providing care. The data is about the patient but the data resides in a health care provider's system. The patient portal is typically defined as a view into the electronic medical records. In addition, ancillary functions that support a health care provider's interaction with a patient are also found in those systems e.g. prescription refill requests, appointment requests, electronic case management, etc. Finally, PHRs are data that resides with the patient, in a system of the patient's choosing. This data may have been exported directly from an EMR, but the point is it now resides in a location of the patient's choosing. Access to that information is controlled entirely by the patient.

    A new concept being discussed is the UHR or "universal health record", which would be a patient-centered and patient-controlled body of information that could be shared in a granular way with particular health care providers at the patient's discretion in support of the patient's work with health care providers. This project would enlist open source contributions and enhancements from developers, with particular emphasis on supporting patient expectations of privacy and responsible patient control of private health information (PHI). It is anticipated that effective implementation of one or more "open source" approaches to the UHR would benefit both providers and patients, including providing more cost-effective solutions to currently difficult problems including entry/verification/update of personal health data, enabling responsible patient-controlled granular release of PHI, and supporting interoperability and effective collaboration of patients and physicians across disparate EHR/PHR platforms.

    While PHRs can help patients keep track of their personal health information, the value of PHRs to healthcare organizations is still unclear.

    In public health

    PHRs have the ability to benefit the public health sector by providing health monitoring, outbreak monitoring, empowerment, linking to services, and research. PHRs can give consumers the potential to play a large role in protecting and promoting the public's health.

    Barriers to adoption

    Barriers to the adoption of PHRs include economic, technological, behavioral, and organizational issues, and barriers exist at both the environmental and individual levels. Limited access to computers and Internet access among low-income populations, known as the digital divide, is one such barrier.

    Functional limitations

    Despite the need to centralize patient information, PHR adoption has been very low. In 2002, a study was carried out in an effort to assess the functionality and utility of online PHRs. An abstraction from real-life case of a patient suffering from a thyroid condition was utilized to create various online PHRs. The outputs generated were examined for accuracy and completeness of clinical information. A team of researchers identified 19 websites offering different versions of PHRs. To evaluate the PHRs, researchers identified criteria based on their promotional advertisements. Ideally, centralized PHRs should help patients relate accurate history during clinical encounters, check for drug interactions, eliminate unnecessary duplication of laboratory tests and diagnostic studies, and serve as an information hub for patients’ health management. An analysis of web-based PHR applications showed that most websites did provide access to personal medical information, however each demonstrated limited capacity in a different way:

    From the 19 sites examined, four were found to be specific to certain diseases only and were therefore excluded from the study. Another four were excluded for reasons such as recurrent technical problems or connections to a specific hospital’s information system. The remaining 11 sites did not provide patients with sufficient guidance as to how they should enter personal data. Some of the sites allowed patients to select medical conditions from categorized lists which did not cover the patients’ complete health condition while others allowed free text entry. To formulate medication history, sites that required patients to choose medication from lists requested them to enter a wide range of descriptive information for each medication such as prescribed dose, administration frequency, start date, name of pharmacy that issued the medication and name of provider that prescribed the medication. With respect to laboratory tests, only two allowed patients to import results from outside sources. From these two sites, only one was functional. Not every site allowed patients to enter insurance coverage information. Majority of the sites required patients to enter date and results of diagnostic tests.

    Most people do not keep record of minute details of their healthcare experiences and therefore find it difficult to make use of web-based PHRs. Overall, the sites selected for evaluation offered limited functionality to the general public. Low adoption of web-based PHRs can be a direct result of limitations in these applications’ data entry, validation and information display methods. PHR development should be guided by ample patient-oriented research in future.

    Promotion

    There are instances where the use of a PHR would be beneficial to patients and may, therefore, override privacy concerns. Stage 1 of meaningful use of certified EHR systems requires that practices provide at least 50 percent of their patients with a copy of their health records upon request. While this can be accomplished through a patient portal, this function can also be part of a larger system such as Kaiser Permanente's My Health Manager—a PHR that is integrated into the health system's patient portal. By June 2012, 3.9 million Kaiser members were enrolled in this program. For the first half of 2012, members viewed 2.5 million lab results, sent 1 million e-mails to physicians, and scheduled 230,000 appointments monthly, demonstrating ease of use and convenience.

    Privacy and security

    One of the most controversial issues for PHRs is how the technology could threaten the privacy of patient information. Network computer break-ins are becoming more common, thus storing medical information online can cause fear of the exposure of health information to unauthorized individuals. In addition to height, weight, blood pressure and other quantitative information about a patient's physical body, medical records can reveal very sensitive information, including fertility, surgical procedures, emotional and psychological disorders, and diseases, etc. Various threats exist to patient information confidentiality:

    Accidental disclosure
    During multiple electronic transfers of data to various entities, medical personnel can make innocent mistakes to cause disclosure of data.
    Insider curiosity
    Medical personnel may misuse their access to patient information out of curiosity or for another purpose.
    Insider subordination
    Medical personnel may leak out personal medical information for spite, profit, revenge, or other purposes.
    Uncontrolled secondary usage
    Those who are granted access to patient information solely for the purpose of supporting primary care can exploit that permission for reasons not listed in the contract, such as research.
    Outsider intrusion
    Former employees, network intruders, hackers, or others may access information, damage systems or disrupt operations

    Unlike paper-based records that require manual control, digital health records are secured by technological tools; three general classes of technological interventions can improve system security:

    Deterrents
    These depend on the ethical behavior of people and include controls such as alerts, reminders, and education of users. Another useful form of deterrents has been Audit Trails. The system records identity, times, and circumstances of users accessing information. If system users are aware of such a record keeping system, it will discourage them from taking ethically inappropriate actions
    Technological obstacles
    These directly control the ability of a user to access information and ensure that users only access information they need to know according to their job requirements. Examples of technological obstacles include authorization, authentication, encryption, firewalls, and more.
    System management precautions
    This involves proactively examining the information system to ensure that known sources of vulnerability are eliminated. Examples of this would be the use of encryption or installing antivirus software in the system

    Information security concerns surrounding PHRs extend beyond technological issues. There are also ethical issues affecting the transfer of personally identifiable information in the treatment process. Only gradually are architectural requirements and information-use policies becoming available such as the Privacy Rule under the U.S. Health Insurance Portability and Accountability Act (HIPAA).

    References

    Personal health record Wikipedia