Neha Patil (Editor)

Mupirocin

Updated on
Edit
Like
Comment
Share on FacebookTweet on TwitterShare on LinkedInShare on Reddit
Trade names
  
Bactroban, others

MedlinePlus
  
a688004

Routes of administration
  
Topical, nasal

CAS ID
  
12650-69-0

AHFS/Drugs.com
  
Monograph

License data
  
US FDA: Bactroban

Molar mass
  
500.622 g/mol

Protein binding
  
97%

Mupirocin

Pregnancy category
  
US: B (No risk in non-human studies)

How to pronounce mupirocin bactroban memorizing pharmacology flashcard


Mupirocin, sold under the brand name Bactroban among others, is an antibiotic useful against superficial skin infections such as impetigo or folliculitis. It may also be used to get rid of methicillin-resistant S. aureus (MRSA) when present in the nose without symptoms. Due to concerns of developing resistance, use for greater than ten days is not recommended. It is used as a cream or ointment applied to the skin.

Contents

Common side effects include itchiness and rash at the site of application, headache, and nausea. Long term use may result in increased growth of fungi. Use during pregnancy and breastfeeding appear to be safe. Mupirocin is in the carbolic acid class of medications. It works by blocking the making of protein by the bacteria which usually results in bacterial death.

Mupirocin was initially isolated in 1971 from Pseudomonas fluorescens. It is on the World Health Organization's List of Essential Medicines, the most effective and safe medicines needed in a health system. The wholesale cost in the developing world is about 2.10 USD for a 15 gm tube. In the United States a course of treatment costs 25 to 50 USD.

Medical uses

Mupirocin is used as a topical treatment for bacterial skin infections, for example, furuncle, impetigo, open wounds, etc. It is also useful in the treatment of superficial methicillin-resistant Staphylococcus aureus (MRSA) infections. Mupirocin is inactive for most anaerobic bacteria, mycobacteria, mycoplasma, chlamydia, yeast and fungi.

Resistance

Shortly after the clinical use of mupirocin began, strains of Staphylococcus aureus that were resistant to mupirocin emerged, with nares clearance rates of less than 30% success. Two distinct populations of mupirocin-resistant S. aureus were isolated. One strain possessed low-level resistance, MuL, (MIC = 8–256 mg/L) and another possessed high-level resistance, MuH, (MIC > 256 mg/L). Resistance in the MuL strains is probably due to mutations in the organism's wild-type isoleucinyl-tRNA synthetase. In E. coli IleRS, a single amino acid mutation was shown to alter mupirocin resistance. MuH is linked to the acquisition of a separate Ile synthetase gene, mupA. Mupirocin is not a viable antibiotic against MuH strains. Other antibiotic agents such as azelaic acid, nitrofurazone, silver sulfadiazine, and ramoplanin have been shown to be effective against MuH strains.

Most strains of Propionibacterium acnes, a causative agent of the skin disease acne vulgaris, are naturally resistant to mupirocin.

The mechanism of mupirocin differs from other clinical antibiotics, rendering cross-resistance to other antibiotics unlikely. However, the MupA gene may co-transfer with other antibacterial resistance genes. This has been observed already with resistance genes for triclosan, tetracycline, and trimethoprim. It may also result in overgrowth of non-susceptible organisms.

Mechanism

Mupirocin reversibly binds to the isoleucyl t-RNA synthetase in Staphylococcus aureus and Streptococcus, resulting in inhibition of protein synthesis. DNA and cell wall formation are also negatively impacted to a lesser degree. The inhibition of RNA synthesis was shown to be a protective mechanism in response to a lack of one amino acid, isoleucine. In vivo studies in Escherichia coli demonstrated that pseudomonic acid inhibits isoleucine t-RNA synthetase (IleRS). This mechanism of action is shared with furanomycin, an analog of isoleucine.

Biosynthesis

Mupirocin is a mixture of several pseudomonic acids, with pseudomonic acid A (PA-A) constituting greater than 90% of the mixture. Also present in mupirocin are pseudomonic acid B with an additional hydroxyl group at C8, pseudomonic acid C with a double bond between C10 and C11, instead of the epoxide of PA-A, and pseudomonic acid D with a double bond at C4` and C5` in the 9-hydroxy-nonanoic acid portion of mupirocin.

Biosynthesis of pseudomonic acid A

The 74 kb mupirocin gene cluster contains six multi-domain enzymes and twenty-six other peptides (Table 1). Four large multi-domain type I polyketide synthase (PKS) proteins are encoded, as well as several single function enzymes with sequence similarity to type II PKSs. Therefore, it is believed that mupirocin is constructed by a mixed type I and type II PKS system. The mupirocin cluster exhibits an atypical acyltransferase (AT) organization, in that there are only two AT domains, and both are found on the same protein, MmpC. These AT domains are the only domains present on MmpC, while the other three type I PKS proteins contain no AT domains. The mupirocin pathway also contains several tandem acyl carrier protein doublets or triplets. This may be an adaptation to increase the throughput rate or to bind multiple substrates simultaneously.

Pseudomonic acid A is the product of an esterification between the 17C polyketide monic acid and the 9C fatty acid 9-hydroxy-nonanoic acid. The possibility that the entire molecule is assembled as a single polyketide with a Baeyer-Villiger oxidation inserting an oxygen into the carbon backbone has been ruled out because C1 of monic acid and C9' of 9-hydroxy-nonanoic acid are both derived from C1 of acetate.

Monic acid biosynthesis

Biosynthesis of the 17C monic acid unit begins on MmpD (Figure 1). One of the AT domains from MmpC may transfer an activated acetyl group from acetyl-Coenzyme A (CoA) to the first ACP domain. The chain is extended by malonyl-CoA, followed by a SAM-dependent methylation at C12 (see Figure 2 for PA-A numbering) and reduction of the B-keto group to an alcohol. The dehydration (DH) domain in module 1 is predicted to be non-functional due to a mutation in the conserved active site region. Module 2 adds another two carbons by malonyl-CoA extender unit, followed by ketoreduction (KR) and dehydration. Module three adds a malonyl-CoA extender unit, followed by SAM-dependent methylation at C8, ketoreduction, and dehydration. Module 4 extends the molecule with a malonyl-CoA unit followed by ketoreduction.

Assembly of monic acid is continued by the transfer of the 12C product of MmpD to MmpA. Two more rounds of extension with malonyl-CoA units are achieved by module 5 and 6. Module 5 also contains a KR domain.

Post-PKS tailoring

The keto group at C3 is replaced with a methyl group in a multi-step reaction (Figure 3). MupG begins by decarboxylating a malonyl-ACP. The alpha carbon of the resulting acetyl-ACP is linked to C3 of the polyketide chain by MupH. This intermediate is dehydrated and decarboxylated by MupJ and MupK, respectively.

The formation of the pyran ring requires many enzyme-mediated steps (Figure 4). The double bond between C8 and C9 is proposed to migrate to between C8 and C16. Gene knockout experiments of mupO, mupU, mupV, and macpE have eliminated PA-A production. PA-B production is not removed by these knockouts, demonstrating that PA-B is not created by hydroxylating PA-A. A knockout of mupW eliminated the pyran ring, identifying MupW as being involved in ring formation. It is not known whether this occurs before or after the esterification of monic acid to 9-hydroxy-nonanoic acid.

The epoxide of PA-A at C10-11 is believed to be inserted after pyran formation by a cytochrome P450 such as MupO. A gene knockout of mupO abolished PA-A production but PA-B, which also conatins the C10-C11 epoxide, remained. This indicates that MupO is either not involved or is not essential for this epoxidation step.

9-Hydroxy-nonanoic acid biosynthesis

The nine-carbon fatty acid 9-hydroxy-nonanoic acid (9-HN) is derived as a separate compound and later esterified to monic acid to form pseudomonic acid. 13C labeled acetate feeding has shown that C1-C6 are constructed with acetate in the canonical fashion of fatty acid synthesis. C7' shows only C1 labeling of acetate, while C8' and C9' show a reversed pattern of 13C labeled acetate. It is speculated that C7-C9 arises from a 3-hydroxypropionate starter unit, which is extended three times with malonyl-CoA and fully reduced to yield 9-HN. It has also been suggested that 9-HN is initiated by 3-hydroxy-3-methylglutaric acid (HMG). This latter theory was not supported by feeding of [3-14C] or [3,6-13C2]-HMG.

It is proposed that MmpB to catalyzes the synthesis of 9-HN (Figure 5). MmpB contains a KS, KR, DH, 3 ACPs, and a thioesterase (TE) domain. It does not contain an enoyl reductase (ER) domain, which would be required for the complete reduction to the nine-carbon fatty acid. MupE is a single-domain protein that shows sequence similarity to known ER domains and may complete the reaction. It also remains possible that 9-hydroxy-nonanoic acid is derived partially or entirely from outside of the mupirocin cluster.

Mupirocin versus fusidic acid

Both 2 percent ointments are applied to patients 3 times daily for 7 days to cure primary and secondary skin infections. The mupirocin bacteriologic cure rate is 97 percent and the fusidic acid bacteriologic cure rate is 87 percent, but mupirocin is more expensive than fusidic acid.

References

Mupirocin Wikipedia