![]() | ||
In mathematics, and more specifically in calculus, L'Hôpital's rule or L'Hospital's rule ([lopital]) uses derivatives to help evaluate limits involving indeterminate forms. Application (or repeated application) of the rule often converts an indeterminate form to an expression that can be evaluated by substitution, allowing easier evaluation of the limit. The rule is named after the 17th-century French mathematician Guillaume de l'Hôpital. Although the contribution of the rule is often attributed to L'Hôpital, the theorem was first introduced to L'Hôpital in 1694 by the Swiss mathematician Johann Bernoulli.
Contents
- History
- General form
- Requirement that the limit exist
- Examples
- Complications
- Other indeterminate forms
- Other methods of evaluating limits
- StolzCesro theorem
- Geometric interpretation
- Special case
- General proof
- Corollary
- Proof
- References
L'Hôpital's rule states that for functions f and g which are differentiable on an open interval I except possibly at a point c contained in I, if
The differentiation of the numerator and denominator often simplifies the quotient or converts it to a limit that can be evaluated directly.
History
Guillaume de l'Hôpital (also written l'Hospital) published this rule in his 1696 book Analyse des Infiniment Petits pour l'Intelligence des Lignes Courbes (literal translation: Analysis of the Infinitely Small for the Understanding of Curved Lines), the first textbook on differential calculus. However, it is believed that the rule was discovered by the Swiss mathematician Johann Bernoulli.
General form
The general form of L'Hôpital's rule covers many cases. Let c and L be extended real numbers (i.e., real numbers, positive infinity, or negative infinity). The real valued functions f and g are assumed to be differentiable on an open interval with endpoint c, and additionally
If either
or
then
The limits may also be one-sided limits. In the second case, the hypothesis that f diverges to infinity is not used in the proof (see note at the end of the proof section); thus, while the conditions of the rule are normally stated as above, the second sufficient condition for the rule's procedure to be valid can be more briefly stated as
The hypothesis "
Requirement that the limit exist
The requirement that the limit
must exist is essential. Without this condition,
this expression does not approach a limit as
In a case such as this, all that can be concluded is that
so that if the limit of f/g exists, then it must lie between the inferior and superior limits of f′/g′. (In the example above, this is true, since 1 indeed lies between −1 and 1.)
Examples
Complications
Sometimes L'Hôpital's rule does not lead to an answer in a finite number of steps unless a transformation of variables is applied. Examples include the following:
A common pitfall is using L'Hôpital's rule with some circular reasoning to compute a derivative via a difference quotient. For example, consider the task of proving the derivative formula for powers of x:
Applying L'Hôpital's rule and finding the derivatives with respect to h of the numerator and the denominator yields n xn−1 as expected. However, differentiating the numerator required the use of the very fact that is being proven. This is an example of begging the question, since one may not assume the fact to be proven during the course of the proof.
Other indeterminate forms
Other indeterminate forms, such as 1∞, 00, ∞0, 0 × ∞, and ∞ − ∞, can sometimes be evaluated using L'Hôpital's rule. For example, to evaluate a limit involving ∞ − ∞, convert the difference of two functions to a quotient:
where L'Hôpital's rule is applied when going from (1) to (2) and again when going from (3) to (4).
L'Hôpital's rule can be used on indeterminate forms involving exponents by using logarithms to "move the exponent down". Here is an example involving the indeterminate form 00:
It is valid to move the limit inside the exponential function because the exponential function is continuous. Now the exponent
Thus
Other methods of evaluating limits
Although L'Hôpital's rule is a powerful way of evaluating otherwise hard-to-evaluate limits, it is not always the easiest way. Consider
This limit may be evaluated using L'Hôpital's rule:
It is valid to move the limit inside the cosine function because the cosine function is continuous.
But a simpler way to evaluate this limit is to use the substitution y = 1/x. As |x| approaches infinity, y approaches zero. So,
The final limit may be evaluated using L'Hôpital's rule or by noting that it is the definition of the derivative of the sine function at zero.
Still another way to evaluate this limit is to use a Taylor series expansion:
For |x| ≥ 1, the expression in parentheses is bounded, so the limit in the last line is zero.
Stolz–Cesàro theorem
The Stolz–Cesàro theorem is a similar result involving limits of sequences, but it uses finite difference operators rather than derivatives.
Geometric interpretation
Consider the curve in the plane whose x-coordinate is given by g(t) and whose y-coordinate is given by f(t), with both functions continuous, i.e., the locus of points of the form [g(t), f(t)]. Suppose f(c) = g(c) = 0. The limit of the ratio f(t)/g(t) as t → c is the slope of the tangent to the curve at the point [g(c), f(c)] = [0,0]. The tangent to the curve at the point [g(t), f(t)] is given by [g′(t), f′(t)]. L'Hôpital's rule then states that the slope of the tangent when t = c is the limit of the slope of the tangent to the curve as the curve approaches the origin, provided that this is defined.
Special case
The proof of L'Hôpital's rule is simple in the case where f and g are continuously differentiable at the point c and where a finite limit is found after the first round of differentiation. It is not a proof of the general L'Hôpital's rule because it is stricter in its definition, requiring both differentiability and that c be a real number. Since many common functions have continuous derivatives (e.g. polynomials, sine and cosine, exponential functions), it is a special case worthy of attention.
Suppose that f and g are continuously differentiable at a real number c, that
This follows from the difference-quotient definition of the derivative. The last equality follows from the continuity of the derivatives at c. The limit in the conclusion is not indeterminate because
The proof of a more general version of L'Hôpital's rule is given below.
General proof
The following proof is due to Taylor (1952), where a unified proof for the 0/0 and ±∞/±∞ indeterminate forms is given. Taylor notes that different proofs may be found in Lettenmeyer (1936) and Wazewski (1949).
Let f and g be functions satisfying the hypotheses in the General form section. Let
For each x in the interval, define
From the differentiability of f and g on
The definition of m(x) and M(x) will result in an extended real number, and so it is possible for them to take on the values ±∞. In the following two cases, m(x) and M(x) will establish bounds on the ratio f/g.
Case 1:
For any x in the interval
and therefore as y approaches c,
Case 2:
For every x in the interval
As y approaches c, both
The limit superior and limit inferior are necessary since the existence of the limit of f/g has not yet been established.
We need the facts that
and
In case 1, the squeeze theorem, establishes that
Note: In case 2 we did not use the assumption that f(x) diverges to infinity within the proof. This means that if |g(x)| diverges to infinity as x approaches c and both f and g satisfy the hypotheses of L'Hôpital's rule, then no additional assumption is needed about the limit of f(x): It could even be the case that the limit of f(x) does not exist. In this case, L'Hopital's theorem is actually a consequence of Cesàro–Stolz.
In the case when |g(x)| diverges to infinity as x approaches c and f(x) converges to a finite limit at c, then L'Hôpital's rule would be applicable, but not absolutely necessary, since basic limit calculus will show that the limit of f(x)/g(x) as x approaches c must be zero.
Corollary
A simple but very useful consequence of L'Hopital's rule is a well-known criterion for differentiability. It states the following: suppose that f is continuous at a, and that
In particular, f' is also continuous at a.
Proof
Consider the functions