![]() | ||
In mathematics, a Lie algebra (/liː/, not /laɪ/) is a vector space together with a non-associative multiplication called "Lie bracket"
Contents
- Definitions
- Generators and dimension
- Subalgebras ideals and homomorphisms
- Direct sum and semidirect product
- Admits an enveloping algebra
- Representation
- Vector spaces
- Subspaces
- Real matrix groups
- Three dimensions
- Infinite dimensions
- Structure theory and classification
- Abelian nilpotent and solvable
- Simple and semisimple
- Cartans criterion
- Classification
- Relation to Lie groups
- Category theoretic definition
- Lie ring
- Examples
- References
Lie algebras were introduced to study the concept of infinitesimal transformations. Hermann Weyl introduced the term "Lie algebra" (after Sophus Lie) in the 1930s. In older texts, the name "infinitesimal group" is used.
Lie algebras are closely related to Lie groups, which are groups that are also smooth manifolds, with the property that the group operations of multiplication and inversion are smooth maps. Any Lie group gives rise to a Lie algebra. Conversely, to any finite-dimensional Lie algebra over real or complex numbers, there is a corresponding connected Lie group unique up to covering (Lie's third theorem). This correspondence between Lie groups and Lie algebras allows one to study Lie groups in terms of Lie algebras.
Definitions
A Lie algebra is a vector space
Using bilinearity to expand the Lie bracket
It is customary to express a Lie algebra in lower-case fraktur, like
Generators and dimension
Elements of a Lie algebra
Subalgebras, ideals and homomorphisms
The Lie bracket is not associative in general, meaning that
then I is called an ideal in the Lie algebra
for all elements x and y in
Let S be a subset of
Direct sum and semidirect product
Given two Lie algebras
Let
Levi's theorem says that a finite-dimensional Lie algebra is a semidirect product of its radical and the complementary subalgebra (Levi subalgebra).
Admits an enveloping algebra
For any associative algebra A with multiplication
The associativity of the multiplication
Representation
Given a vector space V, let
A representation is said to be faithful if its kernel is trivial. Every finite-dimensional Lie algebra has a faithful representation on a finite-dimensional vector space (Ado's theorem).
For example,
given by
for all x and y in the algebra. For any x,
Vector spaces
Subspaces
Real matrix groups
Three dimensions
(The physicist convention for Lie algebras is used in the above equations, hence the factor of i.) The Lie algebra formed by these operators have, in fact, representations of all finite dimensions.
Infinite dimensions
Structure theory and classification
Lie algebras can be classified to some extent. In particular, this has an application to the classification of Lie groups.
Abelian, nilpotent, and solvable
Analogously to abelian, nilpotent, and solvable groups, defined in terms of the derived subgroups, one can define abelian, nilpotent, and solvable Lie algebras.
A Lie algebra
A more general class of Lie algebras is defined by the vanishing of all commutators of given length. A Lie algebra
becomes zero eventually. By Engel's theorem, a Lie algebra is nilpotent if and only if for every u in
is nilpotent.
More generally still, a Lie algebra
becomes zero eventually.
Every finite-dimensional Lie algebra has a unique maximal solvable ideal, called its radical. Under the Lie correspondence, nilpotent (respectively, solvable) connected Lie groups correspond to nilpotent (respectively, solvable) Lie algebras.
Simple and semisimple
A Lie algebra is "simple" if it has no non-trivial ideals and is not abelian. A Lie algebra
The concept of semisimplicity for Lie algebras is closely related with the complete reducibility (semisimplicity) of their representations. When the ground field F has characteristic zero, any finite-dimensional representation of a semisimple Lie algebra is semisimple (i.e., direct sum of irreducible representations.) In general, a Lie algebra is called reductive if the adjoint representation is semisimple. Thus, a semisimple Lie algebra is reductive.
Cartan's criterion
Cartan's criterion gives conditions for a Lie algebra to be nilpotent, solvable, or semisimple. It is based on the notion of the Killing form, a symmetric bilinear form on
where tr denotes the trace of a linear operator. A Lie algebra
Classification
The Levi decomposition expresses an arbitrary Lie algebra as a semidirect sum of its solvable radical and a semisimple Lie algebra, almost in a canonical way. Furthermore, semisimple Lie algebras over an algebraically closed field have been completely classified through their root systems. However, the classification of solvable Lie algebras is a 'wild' problem, and cannot be accomplished in general.
Relation to Lie groups
Although Lie algebras are often studied in their own right, historically they arose as a means to study Lie groups.
Lie's fundamental theorems describe a relation between Lie groups and Lie algebras. In particular, any Lie group gives rise to a canonically determined Lie algebra (concretely, the tangent space at the identity); and, conversely, for any finite-dimensional Lie algebra there is a corresponding connected Lie group (Lie's third theorem; see the Baker–Campbell–Hausdorff formula). This Lie group is not determined uniquely; however, any two connected Lie groups with the same Lie algebra are locally isomorphic, and in particular, have the same universal cover. For instance, the special orthogonal group SO(3) and the special unitary group SU(2) give rise to the same Lie algebra, which is isomorphic to R3 with the cross-product, while SU(2) is a simply-connected twofold cover of SO(3).
Given a Lie group, a Lie algebra can be associated to it either by endowing the tangent space to the identity with the differential of the adjoint map, or by considering the left-invariant vector fields as mentioned in the examples. In the case of real matrix groups, the Lie algebra
Some examples of Lie algebras corresponding to Lie groups are the following:
In the above examples, the Lie bracket
Given a set of generators Ta, the structure constants f abc express the Lie brackets of pairs of generators as linear combinations of generators from the set, i.e., [Ta, Tb] = f abc Tc. The structure constants determine the Lie brackets of elements of the Lie algebra, and consequently nearly completely determine the group structure of the Lie group. The structure of the Lie group near the identity element is displayed explicitly by the Baker–Campbell–Hausdorff formula, an expansion in Lie algebra elements X, Y and their Lie brackets, all nested together within a single exponent, exp(tX) exp(tY) = exp(tX+tY+½ t2[X,Y] + O(t3) ).
The mapping from Lie groups to Lie algebras is functorial, which implies that homomorphisms of Lie groups lift to homomorphisms of Lie algebras, and various properties are satisfied by this lifting: it commutes with composition, it maps Lie subgroups, kernels, quotients and cokernels of Lie groups to subalgebras, kernels, quotients and cokernels of Lie algebras, respectively.
The functor L that takes each Lie group to its Lie algebra and each homomorphism to its differential is faithful and exact. It is however not an equivalence of categories: different Lie groups may have isomorphic Lie algebras (for example SO(3) and SU(2) ), and there are (infinite dimensional) Lie algebras that are not associated to any Lie group.
However, when the Lie algebra
The adjunction
The universal cover group above can be constructed as the image of the Lie algebra under the exponential map. More generally, we have that the Lie algebra is homeomorphic to a neighborhood of the identity. But globally, if the Lie group is compact, the exponential will not be injective, and if the Lie group is not connected, simply connected or compact, the exponential map need not be surjective.
If the Lie algebra is infinite-dimensional, the issue is more subtle. In many instances, the exponential map is not even locally a homeomorphism (for example, in Diff(S1), one may find diffeomorphisms arbitrarily close to the identity that are not in the image of exp). Furthermore, some infinite-dimensional Lie algebras are not the Lie algebra of any group.
The correspondence between Lie algebras and Lie groups is used in several ways, including in the classification of Lie groups and the related matter of the representation theory of Lie groups. Every representation of a Lie algebra lifts uniquely to a representation of the corresponding connected, simply connected Lie group, and conversely every representation of any Lie group induces a representation of the group's Lie algebra; the representations are in one-to-one correspondence. Therefore, knowing the representations of a Lie algebra settles the question of representations of the group.
As for classification, it can be shown that any connected Lie group with a given Lie algebra is isomorphic to the universal cover mod a discrete central subgroup. So classifying Lie groups becomes simply a matter of counting the discrete subgroups of the center, once the classification of Lie algebras is known (solved by Cartan et al. in the semisimple case).
Category theoretic definition
Using the language of category theory, a Lie algebra can be defined as an object A in Veck, the category of vector spaces over a field k of characteristic not 2, together with a morphism [.,.]: A ⊗ A → A, where ⊗ refers to the monoidal product of Veck, such that
where τ(a ⊗ b) := b ⊗ a and σ is the cyclic permutation braiding (id ⊗ τA,A) ° (τA,A ⊗ id). In diagrammatic form:
Lie ring
A Lie ring arises as a generalisation of Lie algebras, or through the study of the lower central series of groups. A Lie ring is defined as a nonassociative ring with multiplication that is anticommutative and satisfies the Jacobi identity. More specifically we can define a Lie ring
Lie rings need not be Lie groups under addition. Any Lie algebra is an example of a Lie ring. Any associative ring can be made into a Lie ring by defining a bracket operator
Lie rings are used in the study of finite p-groups through the Lazard correspondence. The lower central factors of a p-group are finite abelian p-groups, so modules over Z/pZ. The direct sum of the lower central factors is given the structure of a Lie ring by defining the bracket to be the commutator of two coset representatives. The Lie ring structure is enriched with another module homomorphism, the pth power map, making the associated Lie ring a so-called restricted Lie ring.
Lie rings are also useful in the definition of a p-adic analytic groups and their endomorphisms by studying Lie algebras over rings of integers such as the p-adic integers. The definition of finite groups of Lie type due to Chevalley involves restricting from a Lie algebra over the complex numbers to a Lie algebra over the integers, and the reducing modulo p to get a Lie algebra over a finite field.