Formed 1958 Founded 1958 Number of employees 30,000 | Website www.drdo.gov.in | |
![]() | ||
Minister responsible Manohar Parrikar, Defence Minister of India Agency executive Dr.S.Christopher, Secretary, Department of Defence R&D Annual budget 135.9 billion INR (US$2.0 billion, 2016–2017) Aircraft designed DRDO Nishant, DRDO Lakshya, Avatar Profiles |
The Defence Research and Development Organisation (DRDO) is an agency of the Republic of India, charged with the military's research and development, headquartered in New Delhi, India. It was formed in 1958 by the merger of the Technical Development Establishment and the Directorate of Technical Development and Production with the Defence Science Organisation. It is under the administrative control of the Ministry of Defence, Government of India.
Contents
- History
- Aeronautics
- Other Hindustan Aeronautics programmes
- Unmanned aerial vehicles
- Indigenisation efforts
- Armaments
- Small arms
- Explosives
- Artillery systems and ammunition
- Tank armament
- Electronic warfare
- Radars
- Command and control software and decision making tools
- Computing technologies
- Laser Science Technology Centre LASTEC
- Tanks and armoured vehicles
- Modification of BMP 2 series
- Other engineering vehicles
- In development
- Sonars
- Torpedoes
- Other projects
- Integrated Guided Missile Development Programme IGMDP
- Brahmos missile
- Shaurya
- Sagarika
- Sudarshan
- DRDO Glide Bombs
- Prahaar Missile
- Long range SAM
- Astra BVRAAM
- Anti Ballistic Missile Defence Project
- GATET engine
- Anti satellite weapon
- Communication Centric Intelligence Satellite CCI Sat
- References
With a network of 52 laboratories, which are engaged in developing defence technologies covering various fields, like aeronautics, armaments, electronics, land combat engineering, life sciences, materials, missiles, and naval systems, DRDO is India's largest and most diverse research organisation. The organisation includes around 5,000 scientists belonging to the Defence Research & Development Service (DRDS) and about 25,000 other scientific, technical and supporting personnel.
History
Defence Research and Development Organisation (DRDO) was established in 1958 by amalgamating the Defence Science Organisation and some of the technical development establishments. A separate Department of Defence Research and Development was formed in 1980 which later on administered DRDO and its 50 laboratories/establishments. Most of the time the Defence Research Development Organisation was treated as if it was a vendor and the Army Headquarters or the Air Headquarters were the customers. Because the Army and the Air Force themselves did not have any design or construction responsibility, they tended to treat the designer or Indian industry at par with their corresponding designer in the world market. If they could get a MiG-21 from the world market, they wanted a MiG-21 from DRDO. DRDO started its first major project in surface-to-air missiles (SAM) known as Project Indigo in 1960s. Indigo was discontinued in later years without achieving full success. Project Indigo led to Project Devil, along with Project Valiant, to develop short-range SAM and ICBM in the 1970s. Project Devil itself led to the later development of the Prithvi missile under the Integrated Guided Missile Development Programme (IGMDP) in the 1980s. IGMDP was an Indian Ministry of Defence programme between the early 1980s and 2007 for the development of a comprehensive range of missiles, including the Agni missile, Prithvi ballistic missile, Akash missile, Trishul missile and Nag Missile. In 2010, then defence minister A K Antony ordered the restructuring of the Defence Research and Development Organisation (DRDO) to give 'a major boost to defence research in the country and to ensure effective participation of the private sector in defence technology'. The key measures to make DRDO effective in its functioning include the establishment of a Defence Technology Commission with the defence minister as its chairman. The programmes which were largely managed by DRDO have seen considerable success with many of the systems seeing rapid deployment as well as yielding significant technological benefits. DRDO has achieved many successes since its establishment in developing other major systems and critical technologies such as aircraft avionics, UAVs, small arms, artillery systems, EW Systems, tanks and armoured vehicles, sonar systems, command and control systems and missile systems.
Aeronautics
Other Hindustan Aeronautics programmes
Apart from the aforementioned upgrades, DRDO has also assisted Hindustan Aeronautics with its programmes. These include the HAL Dhruv helicopter and the HAL HJT-36. Over a hundred LRU (Line Replaceable Unit)'s in the HJT-36 have come directly from the LCA programme. Other duties have included assisting the Indian Air Force with indigenisation of spares and equipment. These include both mandatory as well as other items.
Unmanned aerial vehicles
The DRDO has also developed two unmanned aerial vehicles - the Nishant tactical UAV and the Lakshya (Target) Pilotless Target Aircraft (PTA). The Lakshya PTA has been ordered by all three services for their gunnery target training requirements. Efforts are on to develop the PTA further, with an improved all digital flight control system, and a better turbojet engine. The Nishant is a hydraulically launched short-ranged UAV for the tactical battle area. It is currently being evaluated by the Indian Navy and the Indian Paramilitary forces as well.
The DRDO is also going ahead with its plans to develop a new class of UAVs. These draw upon the experience gained via the Nishant programme, and will be substantially more capable. Referred to by the HALE (High Altitude Long Endurance) and MALE (Medium Altitude Long Endurance) designations. The MALE UAV has been tentatively named the Rustom, and will feature canards and carry a range of payloads, including optronic, radar, laser designators and ESM. The UAV will have conventional landing and take off capability. The HALE UAV will have features such as SATCOM links, allowing it to be commanded beyond line of sight. Other tentative plans speak of converting the LCA into a UCAV (unmanned combat aerial vehicle), and weaponising UAVs.
Indigenisation efforts
DRDO has been responsible for the indigenisation of key defence stores and equipment. DRDO has assisted Hindustan Aeronautics Limited and the IAF with the indigenisation of spares and assemblies for several aircraft. DRDO laboratories have worked in coordination with academic institutes, the CSIR and even ISRO over projects required for the Indian Air Force and its sister services. DRDO's infrastructure is also utilised by other research organisations in India. In the first ever initiative of its kind, DRDO has provided its patented Copper-Titanium (CuTi) alloy technology for commercial exploitation to a start-up company. The agreement between DRDO and Pahwa Metal Tech Pvt Ltd was signed on the sidelines of the Start Up India event at Delhi.
Armaments
DRDO cooperates with the state owned Ordnance Factories Board for producing its items. These have led to issues of marginal quality control for some items, and time consuming rectification. Whilst these are common to the introduction of most new weapons systems, the OFB has had issues with maintaining the requisite schedule and quality of manufacture owing to their own structural problems and lack of modernization. The DRDO has played a vital role in the development of this ability since the role of private organizations in the development of small arms and similar items has been limited. A significant point in case is the INSAS rifle which has been adopted by the Indian Army as its standard battle rifle and is in extensive service. There have been issues with rifle quality in usage under extreme conditions in the heat, with the OFB stating that it will rectify these troubles with higher grade material and strengthening the unit. Prior troubles were also dealt with in a similar manner. In the meantime, the rifle has found favour throughout the army and has been ordered in number by other paramilitary units and police forces.
In recent years, India's booming economy has allowed the OFB to modernize with more state funding coming its way, to the tune of US$400 million invested during 2002-07. The organization hopes that this will allow it to modernize its infrastructure; it has also begun introducing new items, including a variant of the AK-47 and reverse engineered versions of the Denel 14/20 mm anti-material rifles.
The DRDO's various projects are as follows:
Small arms
Explosives
Chemical Kit for Detection of Explosives (CKDE)
A compact, low-cost and handy explosive detection kit has been designed and perfected for field detection of traces of explosives. The kit yields a colour reaction, based on which explosives can be detected in minutes. It is used for identification of all common military, civil and home-made explosive compositions, and is being used by Police and BSF for the detection of explosives.
Explosive Detection Kit (EDK)
In what has been termed a "reverse technology transfer", the Explosive Detection Kit widely used in India by bomb detection squads and the armed forces since 2002, would be manufactured and sold in the US. The kit uses reagents to detect various chemicals present in explosives.
Indian CL-20 explosive
A new high explosive is in the making at a DRDO lab that could replace other standard explosives of the armed forces such as RDX, HMX, FOX-7 and Amorphous Boron. Scientists at the Pune-based High Energy Materials Research Laboratory (HEMRL) have already synthesised an adequate quantity of CL-20, the new explosive, in their laboratory. The compound, 'Indian CL-20' or 'ICL-20', was indigenously developed in HEMRL using inverse technology. CL-20 is a Nitramine class of explosive 15 times as powerful as HMX. HMX itself is more than four times as potent as RDX. CL-20-based Shaped Charges significantly improve the penetration of armour and could potentially be used in the bomb for the 120-mm main gun mounted on the MBT Arjun tanks. The CL-20, due to its reduced sensitivity enables easy handling and transportation and reduces the chances of mishap and loss to men, money, materials and machines.
Artillery systems and ammunition
Tank armament
DRDO's ARDE also developed other critical systems, such as the Arjun Main Battle Tank's 120 mm rifled main gun and is presently engaged in the development of the armament for the Future IFV, the "Abhay". The DRDO is also a member of the trials teams for the T-72 upgrade and its fire control systems. Earlier on, the DRDO also upgraded the Vijayanta medium tank with new fire control computers.
Electronic warfare
ECM stations for both communication and non-com (radar etc.) systems. The Indian Army has ordered its Signal Corps to be a prime contributor in the design and development stage, along with the DRDO's DLRL. The scale of this venture is substantial - it comprises COMINT and Electronic intelligence stations which can monitor and jam different bands for both voice/data as well as radar transmissions. In contrast to other such systems, Samyukta is an integrated system, which can perform the most critical battlefield EW tasks in both COM and Non-COM roles. The system will be the first of its type in terms of its magnitude and capability in the Army. Its individual modules can also be operated independently. A follow on system known as Sauhard is under development.
EW systems for the Air Force
Radars
The DRDO has steadily increased its radar development. The result has been substantial progress in India's ability to design and manufacture high power radar systems with locally sourced components and systems. This began with the development of short-range 2D systems (Indra-1) and has now extended to high power 3D systems like LRTR intended for strategic purposes. Several other projects span the gamut of radar applications, from airborne surveillance (AEW&C) to firecontrol radars (land based and airborne). A list of the tactical programs is as follows:
Army
System (Rajendra & 3D CAR respectively)
Air Force
More details on the DRDO's productionised as well as production-ready radar systems is as follows:
Apart from the above, the DRDO has also several other radar systems currently under development or in trials, these include:
Command and control software and decision-making tools
Other programmes in development for the Army include Corps level information and decision making software and tools, intended to link all units together for effective C3I. These systems are in production at DRDO's production partner, Bharat Electronics. These projects are being driven by the Indian Army Corps of Signals. The Indian Army is also moving towards extensive use of battlefield computers. DRDO has also delivered projects such as the Combat Net Radio for enhancing the Army's communication hardware.
Computing technologies
DRDO has worked extensively on high speed computing given its ramifications for most of its defence projects. These include supercomputers for computational flow dynamics, to dedicated microprocessor designs manufactured in India for flight controllers and the like, to high speed computing boards built around Commercial Off The Shelf (COTS) components, similar to the latest trends in the defence industry.
Laser Science & Technology Centre (LASTEC)
DRDO is working on a slew of directed energy weapons (DEWs). LASTEC has identified DEWs, along with space security, cyber-security and hypersonic vehicles as focus areas in the next 15 years. The aim is to develop laser-based weapons, deployed on airborne as well as seaborne platforms, which can intercept missiles soon after they are launched towards India in the boost phase itself. These will be part of the ballistic missile defence system being currently developed by DRDO. LASTEC is developing a 25-kilowatt laser system to hit a missile during its terminal phase at a distance of 5–7 km. LASTEC is also working on a vehicle-mounted gas dynamic laser-based DEW system, under project Aditya, which should be ready in three years. Project Aditya is a technology demonstrator to prove beam control technology. Ultimately, solid-state lasers would be used.
LASTEC projects include:
Non-Lethal systems:
Lethal Systems:
Tanks and armoured vehicles
The Arjun follows a template similar to the tanks developed by western nations, with containerised ammunition storage, with blast off panels, heavy Composite armour, a 120 mm gun (rifled as compared to smoothbore on most other tanks), a modern FCS with high hit probability and a 1,400 horsepower (1,000 kW) engine and a four-man crew.
Originally designed in response to a possible Pakistani acquisition of the M1 Abrams, the project fell into disfavour once it became clear that Pakistan was instead standardising on cheaper (and less capable) T type tanks. In such a milieu, acquiring the Arjun in huge numbers is simply unnecessary for the Indian Army, given the additional logistic costs of standardising on an entirely new type. The Indian Army ordered 124 units in 2000 and an additional 124 units in 2010 and mk 2 version is already developed and ordered.
Modification of BMP-2 series
India licence manufactures the BMP-2 with local components. The vehicle has been used as the basis for several locally designed modifications, ranging from missile launchers to engineering support vehicles. The DRDO and its various labs have been instrumental in developing these mission specific variants for the Indian Army.
Other engineering vehicles
In development
Sonars
DRDO, BEL and the Indian Navy have developed and productionised a range of sonars and related systems for the Indian Navy's frontline combat ships.
These include:
Other sonars such as the airborne sonar Mihir are in trials, whilst work is proceeding apace on a new generation of sonars. Sonars may be considered one of DRDO's most successful achievements as the Indian Navy's most powerful ships rely on DRDO made sonars. The standard fit for a front line naval ship would include the HUMSA-NG hull mounted sonar and the Nagin towed array sonar. The Mihir is a dunking sonar meant for use by the Naval ALH, working in conjunction with its Tadpole sonobuoy. The Panchendriya is in production for the Kilo class submarine upgrades.
Torpedoes
DRDO is currently engaged in developing multiple torpedo designs. These include a lightweight torpedo that has been accepted by the Navy and cleared for production.
Under development
The DRDO also developed and productionised a microprocessor controlled triple tube torpedo launcher for the Indian Navy as well as a towed torpedo decoy.
Other projects
These have included indigenisation of various components (for instance, adsorbent material for submarines, radar components, naval ship signature reduction efforts and materials technology). DRDO has played a significant role in the development of warship grade steel in India and its productionisation. DRDO has also assisted private industry in developing EW trainers, ship simulators for training and health monitoring systems for onboard equipment. Other equipment for the Navy includes underwater telephone sets, and VLF communication equipment, for the Navy's submarines. DRDO's IRDE has also developed optronic fire control systems for the Navy's and the Coast Guard's ships.
Information command and control systems
DRDO's labs have been part of projects to develop sophisticated command and control systems for the Navy, such as the EMCCA (Equipment Modular for Command and Control Application) which ties together various sensors and data systems. The EMCCA system gives commanders on the ship a consolidated tactical picture and adds to the ship's maritime combat power.
DRDO labs are also engaged in supporting the Navy's ambitious naval enterprise wide networking system, a programme to link all naval assets together via datalinks, for sharing tactical information.
Mines and targets
Three kinds of mines, processor based mine, moored mine and processor based exercise mine are in production for the Navy. Targets developed for the Navy include a static target called the Versatile Acoustic target and a mobile target called the programmable deep mobile target (PDMT).
In development
Integrated Guided Missile Development Programme (IGMDP)
The IGMDP was launched by the Indian Government to develop the ability to develop and design a missile locally, and manufacture a range of missile systems for the three defence services. The programme has seen significant success in its two most important constituents - the Agni missiles and the Prithvi missiles, while two other programmes, the Akash SAM and the anti-tank Nag Missile have seen significant orders. The Trishul missile, a programme to develop a tri-service short-range SAM faced persistent problems throughout its development, and was shut down in 2007.
Prithvi ballistic missiles
The Prithvi (Sanskrit: Earth) missiles are a range of SRBMs produced for the Indian Air Force and Army; a variant for the Navy has been deployed on Sukanya class patrol vessel. Another submarine-launched variant known as the K-15 is under development. The Prithvi is an extremely accurate liquid fuelled missile with a range of up to 350 km. While relatively inexpensive and accurate, with a good payload, its logistics footprint is high, on account of it being liquid fuelled.
Agni ballistic missiles
The Agni (Sanskrit: Fire) ballistic missiles are a range of MRBMs, IRBMs, ICBMs meant for long-range deterrence. The Agni-III is the newest version which is getting inducted into the armed forces and has range of up to 3,500 km (2,175 mi). The Agni-I and Agni-II have been productionised, although exact numbers remain classified.
First trials of the Agni-III saw problems and the missile test did not meet its objectives. The second test was successful. Further tests of the Agni-III are planned to validate the missile and its subsystems, which include new propellant and guidance systems, a new reentry vehicle and other improvements.
The Agni-V missile is an Intercontinental ballistic missile meant for long-range deterrence. The Agni-V is the newest version and has the longest range of up to 5000–6000 km. Agni-V would also carry Multiple independently targetable reentry vehicle payloads and will have countermeasures against Anti-ballistic missile systems. It was successfully test fired on 19 April 2012. The missile will utilise a canister and will be launched from it. Sixty percent of the missile will be similar to the Agni-III missile. Advanced technologies like ring laser gyroscope and accelerometer will be used in the new missile. DRDO plans to develop reusable missiles which will be a combination of ballistic and cruise missile technology. During an interview in August 24, 2014, The DRDO chief disclosed the plans of DRDO designing a Long Range ballistic Anti-Ship missile.
Akash SAM
The Akash (Sanskrit: Sky or ether) is a medium-range surface-to-air missile system consisting of the command guidance ramjet powered Akash along with the dedicated service specific launchers, battery control radar (the Rajendra Block III), a central acquisition radar, battery and group control centres. The Akash project has yielded spinoffs like the Central Acquisition radar and weapon locating radar.
The Akash system cleared its user trials with the Indian Air Force in 2007. The user trials had the Akash intercept flying targets at ITR, Chandipur. The Akash missile successfully hit its targets in all of the tests. The Indian Air force has since been satisfied with the performance of the missile and ordered two squadrons of the Akash, with a squadron having eight launchers
The Indian Air Force placed an order for an additional six squadrons of the Akash SAM in 2010, with an order of 750 missiles (125 per squadron). This order makes a total of a 1000 Akash SAMs on order for the Indian Air Force for eight squadrons. In June 2010, the Defence Acquisition Council placed an order of the Akash missile system, valued at ₹12,500 crore (US$1.9 billion). Bharat Dynamics Limited will be the system integrator and nodal production agency for the Akash Army variant.
Trishul SAM
The Trishul (Sanskrit: Trident) is a short range surface-to-air missile developed by India. It was developed by Defence Research and Development Organisation as a part of the Integrated Guided Missile Development Program. It can also be used as an anti-sea skimmer from a ship against low flying attacking missiles. Trishul has a range of 9 km (5.6 mi) It is powered by a dual thrust propulsion stage using high-energy solid propellant. Trishul weighs 130 kg (290 lb) and is capable of carrying a 15 kg (33 lb) warhead.
The Trishul missile project was commissioned in 1983 as a part of Integrated Guided Missile Development Program. The project was to be completed by 1992 and the missile would be fitted to Brahmaputra-class frigates as an anti-sea skimmer. In 1985, Trishul made its first unguided flight from Satish Dhawan Space Centre, Sriharikota. The missile made its first full range guided flight in 1989. In 1992, the missile was successfully tested against a target and reached Mach 2 speed. In 1997, the associated radar systems for detecting the incoming sea-skimmer were operational. The launch system was developed by Bharat Dynamics Limited in 1998. In 2003, Government of India announced that the missile will be a technology demonstrator and de-linked it from other projects. The missile was successfully test fired in 2005. The development cost of the programme was ₹2.826 billion (US$42 million) and the Defence minister announced the official closure of the programme in 2008.
Nag anti-tank missile
The Nag Anti-tank missile (Sanskrit: Cobra) is a guided missile system intended for the Indian Air Force and the Indian Army. The Army will deploy the Nag on ground based launchers and from helicopters, whereas the Air Force will rely on helicopter based units. The Nag has an Imaging Infrared (IIR) seeker and has a top and direct attack capability, with a tandem warhead. The Army's land missile carrier and launcher, known as the Namica, carries several ready to use Nag missiles within and four Nag missiles in an extendable launcher above the turret. The Namica has its own FLIR based sighting and fire control unit.
The Air Force and Army will also use their Advanced Light helicopters (ALH) (HAL Dhruv) and the HAL Light Combat Helicopter (LHC) as Nag carriers. The ALHs will be equipped with IRDE (DRDO) developed HELITIS (Heliborne Imaging and Targeting systems) with a combination of a FLIR and laser range finder in a stabilised turret for target acquisition and designation. The thermal imager is likely to be imported, but the gimballed turret, stabilisation, laser range finder and associated electronics have been designed in India and will be manufactured locally. The Nag ATGM is regarded as a highly capable missile, even though its development has been protracted, mainly due to the technological challenges of developing a state of the art IIR sensor equipped top attack missile. The Nag is still cheaper than most imported missiles in its category and is earmarked for the Army and Air Force.
The Nag anti-tank guided missile was cleared for production in July 2009 and there are uncorroborated reports since that it may be purchased by Tanzania, Botswana and Morocco. The Nag will complement the existing Russian 9M113 Konkurs Anti-tank guided missile and European missile MILAN in Indian usage, both of which are manufactured under licence by Bharat Dynamics Limited.
Brahmos missile
Launched as a joint venture between India's DRDO and the Russian NPO, the BrahMos programme aims at creating a range of missile systems derived from the Yakhont missile system. Named the "BrahMos" after the Brahmaputra and the Moskva rivers, the project has been highly successful.
The Indian Navy has ordered the BrahMos Naval version, both slant-launched and vertically launched, for its ships; the Indian Army has ordered two regiments worth of land-launched missiles for long-range strike; and an air-launched version is in development for the Indian Air Force's Su-30 MKIs and the Navy's Tu-142 long-range aircraft.
The DRDO has been responsible for the navigational systems on the BrahMos, aspects of its propulsion, airframe and seeker, plus its Fire Control Systems, Mobile Command posts and Transporter Erector Launcher.
The hypersonic Brahmos 2 is to be developed as a follow on to the original Brahmos. The missile would fly at speeds of 5-7 Mach.
BrahMos I Block-III
An upgraded version of the 290 km range BrahMos supersonic cruise missile was successfully test fired by India on 2 December 2010 from Integrated Test Range (ITR) at Chandipur off the Orissa coast.
"Block III version of BrahMos with advanced guidance and upgraded software, incorporating high manoeuvres at multiple points and steep dive from high altitude was flight tested successfully from Launch Complex III of ITR," its Director S P Dash said after the test fire from a mobile launcher at 1100 hours. The 8.4-metre missile which can fly at 2.8 times the speed of sound is capable of carrying conventional warheads of up to 300 kg for a range of 290 km.
It can effectively engage ground targets from an altitude as low as 10 metres for surgical strikes at terror training camps across the border without causing collateral damage. BrahMos is capable of being launched from multiple platforms like submarine, ship, aircraft and land based Mobile Autonomous Launchers (MAL). The Block III BrahMos has the capability of scaling mountain terrain and can play a vital role in precision strike in the northern territories. The advanced cruise missile can fly close to the rough geographies and kill the target A five-year development timeframe is anticipated.
Shaurya
The Shaurya missile (Sanskrit: Valor) is a canister-launched hypersonic surface-to-surface tactical missile developed by the Indian Defence Research and Development Organisation (DRDO) for use by the Indian Armed Forces. Similar to the BrahMos, Shaurya is stored in composite canisters, which makes it much easier to store for long periods without maintenance as well as to handle and transport. It also houses the gas generator to eject the missile from the canister before its solid propellant motors take over to hurl it at the intended target.
Shaurya missiles can remain hidden or camouflaged in underground silos from enemy surveillance or satellites till they are fired from the special storage-cum-launch canisters. The Shaurya system will require some more tests before it becomes fully operational in two-three years. Moreover, defence scientists say the high-speed, two-stage Shaurya has high maneuverability which also makes it less vulnerable to existing anti-missile defence systems.
It can be easily transported by road. The missile, encased in a canister, is mounted on a single vehicle, which has only a driver's cabin, and the vehicle itself is the launch platform. This "single vehicle solution" reduces its signature – it cannot be easily detected by satellites – and makes its deployment easy. The gas generator, located at the bottom of the canister produces high pressure gas, which expands and ejects the missile from the tube.
The centrepiece of a host of new technologies incorporated in Shaurya is its ring laser gyroscope (RLG) and accelerometer. The indigenous ring laser gyroscope, a sophisticated navigation and guidance system developed by the Research Centre Imarat (RCI) based in Hyderabad is a highly classified technology.
In test flights the RLG functioned exceptionally well. the RLG monitors the missile's position in space when it is flying. The missile's on-board computer will use this information and compare it with the desired position. Based on the difference between the missile's actual and desired positions, the computer will decide the optimum path and the actuators will command the missile to fly in its desired/targeted position. The third test of the RLG was successful on 24 September 2011, reaching a speed of 7.5 mach. It is now ready for production.
Sagarika
The K-15 Sagarika is a nuclear-capable submarine-launched ballistic missile belonging to the K Missile family with a range of 750 kilometres (466 mi). Sagarika can carry a payload of up to 500 kilograms (1,102 lb). Sagarika was developed at the DRDO's missile complex in Hyderabad.
This missile will form part of the triad in India's nuclear deterrence, and will provide retaliatory nuclear strike capability. The development of this missile (under the title Project K-15) started in 1991. The Indian government first confirmed Sagarika's development seven years later (1998), when the then Defence Minister, George Fernandes, announced it during a press conference.
The development of the underwater missile launcher, known as Project 420 (P420), was completed in 2001 and handed over to the Indian Navy for trials. The missile was successfully test fired six times, and tested to its full range up to three times. The test of missile from a submerged pontoon was conducted in February 2008.
Sagarika is being integrated with India's nuclear-powered Arihant class submarines that began sea trials on 26 July 2009.
Sudarshan
India's first laser-guided bomb, Sudarshan is the latest weapon system developed indigenously to occupy the niche of a precision delivery mechanism. It can be fitted to a 1000-pound gravity bomb and can guide it to the target using lasers with a CEP (Circular Error Probability) of 10 metres.
DRDO Glide Bombs
Garuthmaa & Garudaa are DRDO's 1000 kg Glide Bombs. These are India's first indigenously designed Glide Bomb with a range of 30 km (Garudaa) to 100 km (Garuthmaa).
Prahaar Missile
Prahaar is a solid-fueled surface-to-surface guided short-range tactical ballistic missile developed by DRDO of India. It would be equipped with omni-directional warheads and could be used for hitting both tactical and strategic targets. It has a range of about 150 km. It was test-fired successfully on 21 July 2011 from the Integrated Test Range (ITR) at Chandipur.
Long-range SAM
India and Israel have worked out an agreement to develop and produce the long-range Barak 8 air defence system for both the Indian and the Israeli militaries. The initial co-development funding is about US$350 million, of which IAI will finance 50 per cent. The venture is a tripartite one, between the DRDO, the Indian Navy, and IAI. The missile is referred to as the LRSAM in Indian Government literature, and will have a range of 72 km (45 mi). Israel Aircraft Industries refers to the system as Barak-8. IAI states that the missile will have a dual pulse motor, is vertically launched and is able to engage both aircraft and sea skimming missiles. It has a fully active seeker, and the Barak-8 Weapons system is capable of multiple simultaneous engagements. It will have a two way datalink for midcourse update, as well as be able to integrate into larger C3I networks. The primary fire control sensor for the naval Barak-8/LRSAM will be the ELTA MF-STAR Naval AESA radar which Israel claims to be superior to many existing systems worldwide. The dual pulse rocket motor for the SAM was developed by DRDO, and the prototypes were supplied to IAI for integration with IAI systems to develop the complete missile.
The other variant of the LRSAM will be fielded by the Indian Air Force. Along with the Akash SAM, the LRSAM fills a longer range requirement and both types will complement each other. Each unit of the MR-SAM would consist of a command and control centre, with an acquisition radar, a guidance radar and 3 launchers with eight missiles each.
A 4-year, US$300 million System Design & Development phase to develop unique system elements and an initial tranche of the land-based missiles is estimated. The radars, C2 centres, TEL's and missiles will be codeveloped by Israel and India. In turn, IAI and its Israeli partners have agreed to transfer all relevant technologies and manufacturing capabilities to India allowing India to manufacture the LRSAM systems locally as well as support them. The Barak-8 next generation long-range surface-to-air missile (LR-SAM) had its first test-flight on 29 May 2010.
Astra BVRAAM
Astra is a 80 km (50 mi) class, active radar homing air-to-air missile meant for beyond-visual-range missile combat. Several tests of the missiles basic propulsion and guidance have taken place from land based launchers. Air-launched trials will follow thereafter. DRDO has developed an indigenous 7 kg lightweight rocket launcher for the Indian army which will replace the 14 kg Carl Gustav Mark-II launcher which is much heavier than the DRDO-developed rocket launcher. The DRDO has made extensive use of composites in its construction, resulting in the reduced weight.
Anti-Ballistic Missile Defence Project
Unveiled in 2006, the ABM project was a surprise to many observers. While DRDO had revealed some details about the project over the years, its progress had been marked by strict secrecy, and the project itself was unlisted, and not visible among DRDO's other programmes. The ABM project has benefited from all the incremental improvements achieved by the DRDO and its associated industrial partners via the long-running and often contentious Akash missile and Trishul missile programmes. However, it is a completely new programme, with much larger scope and with predominantly new subsystems.
The ABM project has two missiles—namely the AAD (Advanced Air Defence) and PAD (Prithvi Air Defence) missiles. The former is an endo-atmospheric interceptor of new design, which can intercept targets to a height of 30 km (19 mi). Whereas the latter is a modified Prithvi missile, dubbed the Axo-atmospheric interceptor (AXO) with a dedicated second stage kill vehicle for ballistic missile interception, up to an altitude of 80 km (50 mi). Both these missiles are cued by an active phased array Long Range Tracking Radar, similar to the Elta GreenPine but made with locally developed components, which include DRDO-developed transmit/receive modules. The ABM system also makes use of a second radar, known as the Multi-Function Control Radar which assists the LRTR in classifying the target, and can also act as the fire control radar for the AAD missile. The MFCR, like the LRTR, is an active phased array system.
The entire system was tested in November 2006, under the Prithvi Air Defence Exercise, when a prototype AXO missile, successfully intercepted another Prithvi missile at a height of 50 km (31 mi). This test was preceded by an "electronic test" in which an actual target missile was launched, but the entire interceptor system was tested electronically, albeit no actual interceptor was launched. This test was successful in its entirety. The AAD Missile was tested on December 2007 which successfully intercepted a modified Prithvi missile simulating the M-9 and M-11 class of ballistic missiles. Interception happened at an altitude of 15 km (9 mi).
GATET engine
The Defence Research and Development Organisation (DRDO) has launched a ₹100 crore (US$14.9 million) project in R&D in the area of gas turbines, a DRDO official said on April 2010. Under the initiative of DRDO's Aeronautics Research and Development Board, R&D projects, which need investment in the region of ₹50 lakh (US$74,300.00) to ₹5 crore (US$743,000.00), would be considered for funding. GTRE was the nodal agency to spearhead this venture, called GATET
Anti-satellite weapon
After testing the over 5,000 km Agni V missile, which went up to 600 km into space during its parabolic trajectory, the Defence Research and Development Organisation (DRDO) now feels it can fashion deadly anti-satellite (ASAT) weapons in double-quick time. Agni V gives you the boosting capability and the 'kill vehicle', with advanced seekers, will be able to home into the target satellite, DRDO chief, VK Saraswat said. The defence ministry in 2010 had even drafted a 15-year "Technology Perspective and Roadmap", which held development of ASAT weapons "for electronic or physical destruction of satellites in both LEO (2,000-km altitude above earth's surface) and the higher geosynchronous orbit" as a thrust area in its long-term integrated perspective plan under the management of DRDO. Consequently, defence scientists are focusing on "space security" to protect India's space assets from electronic or physical destruction. Another spin-off from Agni V test is that the DRDO feels it can work towards launching mini-satellites for battlefield use if an adversary attacks the country's main satellites.
Communication-Centric Intelligence Satellite (CCI-Sat)
Communication-Centric Intelligence Satellite is an advanced reconnaissance satellite, being developed by DRDO. It will be India's first officially declared spy satellite and according to ISRO it should be in the sky by 2014. This satellite will help Indian intelligence agencies to significantly boost surveillance of terror camps in neighbouring countries.