Neha Patil (Editor)

Computational science

Updated on
Edit
Like
Comment
Share on FacebookTweet on TwitterShare on LinkedInShare on Reddit

Computational science (also scientific computing or scientific computation (SC)) is a rapidly growing multidisciplinary field that uses advanced computing capabilities to understand and solve complex problems. Computational science fuses three distinct elements:

Contents

  • Algorithms (numerical and non-numerical) and modeling and simulation software developed to solve science (e.g., biological, physical, and social), engineering, and humanities problems
  • Computer and information science that develops and optimizes the advanced system hardware, software, networking, and data management components needed to solve computationally demanding problems
  • The computing infrastructure that supports both the science and engineering problem solving and the developmental computer and information science
  • In practical use, it is typically the application of computer simulation and other forms of computation from numerical analysis and theoretical computer science to solve problems in various scientific disciplines.

    The field is different from theory and laboratory experiment which are the traditional forms of science and engineering. The scientific computing approach is to gain understanding, mainly through the analysis of mathematical models implemented on computers.

    Scientists and engineers develop computer programs, application software, that model systems being studied and run these programs with various sets of input parameters. In some cases, these models require massive amounts of calculations (usually floating-point) and are often executed on supercomputers or distributed computing platforms.

    Numerical analysis is an important underpinning for techniques used in computational science.

    Applications of computational science

    Problem domains for computational science/scientific computing include:

    Numerical simulations

    Numerical simulations have different objectives depending on the nature of the task being simulated:

  • Reconstruct and understand known events (e.g., earthquake, tsunamis and other natural disasters).
  • Predict future or unobserved situations (e.g., weather, sub-atomic particle behaviour, and primordial explosions).
  • Model fitting and data analysis

  • Appropriately tune models or solve equations to reflect observations, subject to model constraints (e.g. oil exploration geophysics, computational linguistics).
  • Use graph theory to model networks, such as those connecting individuals, organizations, websites, and biological systems.
  • Computational optimization

  • Optimize known scenarios (e.g., technical and manufacturing processes, front-end engineering).
  • Machine learning
  • Methods and algorithms

    Algorithms and mathematical methods used in computational science are varied. Commonly applied methods include:

    Both historically and today, Fortran remains popular for most applications of scientific computing. Other programming languages and computer algebra systems commonly used for the more mathematical aspects of scientific computing applications include GNU Octave, Haskell, Julia, Maple, Mathematica, MATLAB, Python (with third-party SciPy library), Perl (with third-party PDL library), R, SciLab, and TK Solver. The more computationally intensive aspects of scientific computing will often use some variation of C or Fortran and optimized algebra libraries such as BLAS or LAPACK.

    Computational science application programs often model real-world changing conditions, such as weather, air flow around a plane, automobile body distortions in a crash, the motion of stars in a galaxy, an explosive device, etc. Such programs might create a 'logical mesh' in computer memory where each item corresponds to an area in space and contains information about that space relevant to the model. For example, in weather models, each item might be a square kilometer; with land elevation, current wind direction, humidity, temperature, pressure, etc. The program would calculate the likely next state based on the current state, in simulated time steps, solving equations that describe how the system operates; and then repeat the process to calculate the next state.

    The term computational scientist is used to describe someone skilled in scientific computing. This person is usually a scientist, an engineer or an applied mathematician who applies high-performance computing in different ways to advance the state-of-the-art in their respective applied disciplines in physics, chemistry or engineering. Scientific computing has increasingly also impacted on other areas including economics, biology and medicine.

    Computational science is now commonly considered a third mode of science, complementing and adding to experimentation/observation and theory. The essence of computational science is numerical algorithm and/or computational mathematics. In fact, substantial effort in computational sciences has been devoted to the development of algorithms, the efficient implementation in programming languages, and validation of computational results. A collection of problems and solutions in computational science can be found in Steeb, Hardy, Hardy and Stoop, 2004.

    Reproducibility and open research computing

    The complexity of computational methods is a threat to the reproducibility of research. Jon Claerbout has become prominent for pointing out that reproducible research requires archiving and documenting all raw data and all code used to obtain a result. Nick Barnes, in the Science Code Manifesto, proposed five principles that should be followed when software is used in open science publication. Tomi Kauppinen et al. established and defined Linked Open Science, an approach to interconnect scientific assets to enable transparent, reproducible and transdisciplinary research.

    Journals

    Most scientific journals do not accept software papers because a description of a reasonably mature software usually does not meet the criterion of novelty. Outside computer science itself, there are only few journals dedicated to scientific software. Established journals like Elsevier's Computer Physics Communications publish papers that are not open-access (though the described software usually is). To fill this gap, a new journal entitled Open research computation was announced in 2010; it closed in 2012 without having published a single paper, for a lack of submissions probably due to excessive quality requirements. A new initiative was launched in 2012, the Journal of Open Research Software. In 2015, a new journal dedicated to the replication of computational results has been started on GitHub.

    Education

    Scientific computation is most often studied through an applied mathematics or computer science program, or within a standard mathematics, sciences, or engineering program. At some institutions a specialization in scientific computation can be earned as a "minor" within another program (which may be at varying levels). However, there are increasingly many bachelor's and master's programs in computational science. Some schools also offer the Ph.D. in computational science, computational engineering, computational science and engineering, scientific computation, or all three degrees bachelor's, master's and PhD in scientific computing.

    There are also programs in areas such as computational physics, computational chemistry, etc.

    References

    Computational science Wikipedia