Many groups worldwide are pursuing development of a universal flu vaccine that does not require modification each year.
Contents
Development predictions
On February 13, 2013, U.S. Food and Drug Administration (FDA) Chief Scientist Jesse Goodman predicted that a universal flu vaccine was still 5 to 10 years away. When asked about the prospects of a universal flu vaccine in a hearing before House Energy and Commerce Subcommittee on Oversight and Investigations, Goodman replied "Nature is very tricky and as this is a very crafty virus, so I'd be very hesitant to predict... I think the earliest we'd begin to see something with clinical benefit might be 5 to 10 years."
Based on the results of animal studies, a universal flu vaccine may use a two-step vaccination strategy — priming with a DNA-based HA vaccine followed by a second dose with an inactivated, attenuated, or adenovirus-vector–based vaccine.
The NIAID/NIH state that "developing new and improved vaccines is a high priority". The BIO2016 convention featured a panel discussion titled "Solving the Flu Problem: Can New Technologies Lead to Universal Flu Vaccines?" featuring speakers from BARDA and industry.
Research
Some people given a 2009 H1N1 flu vaccine have developed broadly protective antibodies, raising hopes for a universal flu vaccine.
A 'vaccine'/antigen based on the hemagglutinin (HA) stem was the first to induce 'broadly neutralizing' antibodies to both HA-group 1 and HA-group 2 influenza in mice.
In July 2011, researchers created an antibody, which targets a protein found on the surface of all influenza A viruses called haemagglutinin. F16 is the only known antibody that binds (its neutralizing activity is controversial) to all 16 subtypes of the influenza A virus hemagglutinin and might be the lynchpin for a universal influenza vaccine. The subdomain of the hemagglutinin that is targeted by FI6, namely the stalk domain, was actually successfully used earlier as universal influenza virus vaccine by Peter Palese's research group at Mount Sinai School of Medicine.
Other vaccines are polypeptide based.
Research organizations
DNA vaccines, such as VGX-3400X (aimed at multiple H5N1 strains), contain DNA fragments (plasmids). Inovio's SynCon DNA vaccines include H5N1 and H1N1 subtypes.
In 2008, Acambis announced work on a universal flu vaccine (ACAM-FLU-ATM) based on the less variable M2 protein component of the flu virus shell. See also H5N1 vaccines.
In 2009, the Wistar Institute received a patent for using "a variety of peptides" in a flu vaccine, and announced it was seeking a corporate partner.
In 2010, the National Institute of Allergy and Infectious Diseases (NIAID) of the U.S. NIH announced a breakthrough; the effort targets the stem, which mutates less often than the head of the virus.
By 2010 some universal flu vaccines had started early stage clinical trials.
Companies pursuing the vaccine as of 2009 and 2010 include BiondVax, Theraclone, Dynavax Technologies Corporation, VaxInnate, Crucell NV, Inovio Pharmaceuticals, and Immune Targeting Systems (ITS)