In mathematics, specifically in symplectic topology and algebraic geometry, one can construct the moduli space of stable maps, satisfying specified conditions, from Riemann surfaces into a given symplectic manifold. This moduli space is the essence of the Gromov–Witten invariants, which find application in enumerative geometry and type IIA string theory. The idea of stable map was proposed by Maxim Kontsevich around 1992 and published in Kontsevich (1995).
Contents
- The moduli space of smooth pseudoholomorphic curves
- The stable map compactification
- The GromovWitten pseudocycle
- References
Because the construction is lengthy and difficult, it is carried out here rather than in the Gromov–Witten invariants article itself.
The moduli space of smooth pseudoholomorphic curves
Fix a closed symplectic manifold
where
is a function satisfying, for some choice of
Typically one admits only those
The operator
of dimension given by the Atiyah-Singer index theorem,
The stable map compactification
This moduli space of maps is not compact, because a sequence of curves can degenerate to a singular curve, which is not in the moduli space as we've defined it. This happens, for example, when the energy of
In order to make this precise, define a stable map to be a pseudoholomorphic map from a Riemann surface with at worst nodal singularities, such that there are only finitely many automorphisms of the map. Concretely, this means the following. A smooth component of a nodal Riemann surface is said to be stable if there are at most finitely many automorphisms preserving its marked and nodal points. Then a stable map is a pseudoholomorphic map with at least one stable domain component, such that for each of the other domain components
It is significant that the domain of a stable map need not be a stable curve. However, one can contract its unstable components (iteratively) to produce a stable curve, called the stabilization
The set of all stable maps from Riemann surfaces of genus
The topology is defined by declaring that a sequence of stable maps converges if and only if
The moduli space of stable maps is compact; that is, any sequence of stable maps converges to a stable map. To show this, one iteratively rescales the sequence of maps. At each iteration there is a new limit domain, possibly singular, with less energy concentration than in the previous iteration. At this step the symplectic form
with equality if and only if the map is pseudoholomorphic. This bounds the energy captured in each iteration of the rescaling and thus implies that only finitely many rescalings are needed to capture all of the energy. In the end, the limit map on the new limit domain is stable.
The compactified space is again a smooth, oriented orbifold. Maps with nontrivial automorphisms correspond to points with isotropy in the orbifold.
The Gromov–Witten pseudocycle
To construct Gromov–Witten invariants, one pushes the moduli space of stable maps forward under the evaluation map
to obtain, under suitable conditions, a rational homology class
Rational coefficients are necessary because the moduli space is an orbifold. The homology class defined by the evaluation map is independent of the choice of generic
The "suitable conditions" are rather subtle, primarily because multiply covered maps (maps that factor through a branched covering of the domain) can form moduli spaces of larger dimension than expected.
The simplest way to handle this is to assume that the target manifold
Defining Gromov–Witten invariants without assuming some kind of semipositivity requires a difficult, technical construction known as the virtual moduli cycle.