Girish Mahajan (Editor)

Solar Maximum Mission

Updated on
Edit
Like
Comment
Share on FacebookTweet on TwitterShare on LinkedInShare on Reddit
Mission type
  
Solar physics

COSPAR ID
  
1980-014A

Mission duration
  
9 years

Period
  
1.6 hours

Inclination
  
28.5°

Rocket
  
Delta 3000

Operator
  
NASA

SATCAT no.
  
11703

Launch date
  
14 February 1980

Inclination
  
28.5°

Launch mass
  
2,315 kg

Solar Maximum Mission SMM Home Page

Bus
  
Multimission Modular Spacecraft

Similar
  
ACRIMSAT, Yohkoh, Solar and Heliosph, TRACE, STEREO

The Solar Maximum Mission satellite (or SolarMax) was designed to investigate Solar phenomena, particularly solar flares. It was launched on February 14, 1980. The SMM was the first satellite based on the Multimission Modular Spacecraft bus manufactured by Fairchild Industries, a platform which was later used for Landsats 4 and 5 as well as the Upper Atmosphere Research Satellite.

Contents

Solar Maximum Mission Solar Maximum Mission Satellite Photograph by Science Source

The Solar Maximum Mission ended on December 2, 1989, when the spacecraft re-entered the atmosphere and burned up.

Failure and repair

Solar Maximum Mission httpsuploadwikimediaorgwikipediacommonsthu

In November 1980, the second of four fuses in SMM's attitude control system failed, causing it to rely on its magnetorquers in order to maintain attitude. In this mode, only three of the seven instruments on board were usable, as the others required the satellite to be accurately pointed at the Sun. The use of the satellite's magnetorquers prevented the satellite from being used in a stable position and caused it to "wobble" around its nominally sun-pointed attitude.

Solar Maximum Mission The Solar Maximum Mission

The first orbiting, unmanned satellite to be repaired in space, SMM was notable in that its useful life compared with similar spacecraft was significantly increased by the direct intervention of a manned space mission. During STS-41-C in 1984, the Space Shuttle Challenger rendezvoused with the SMM, astronauts James van Hoften and George Nelson attempted to use the Manned Maneuvering Unit to capture the satellite and to bring it into the orbiter's payload bay for repairs and servicing. The plan was to use an astronaut-piloted Maneuvering Unit to grapple the satellite with the Trunion Pin Attachment Device (TPAD) mounted between the hand controllers of the Maneuvering Unit, null its rotation rates, and allow the Shuttle to bring it into the Shuttle's payload bay for stowage. Three attempts to grapple the satellite using the TPAD failed. The TPAD jaws could not lock onto Solar Max because of an obstructing grommet on the satellite not included in its blueprints.

Solar Maximum Mission Solar Maximum 20122013

This led to an improvised plan which nearly ended the satellite's mission. The improvisation had the astronaut use his hands to grab hold of a solar array and null the rotation by a push from the Maneuvering Unit's thrusters. Instead, this attempt induced higher rates and in multiple axes; the satellite was tumbling out of control and quickly losing battery life. SMM Operations Control Center engineers shut down all non-essential satellite subsystems and with a bit of luck were able to recover the satellite minutes before total failure. The ground support engineers then stabilized the satellite and nulled its rotation rates for capture with the Shuttle's robotic arm. This proved to be a much better plan. The satellite had been fitted with one of the arm's "grapple fixtures" so that the robotic arm was able to capture and maneuver it into the shuttle's payload bay for repairs. During the mission, the SMM's entire attitude control system module and the electronics module for the coronagraph/polarimeter instrument were replaced, and a gas cover was installed over the X-ray polychromator. Their successful work added five more years to the lifespan of the satellite. The mission was depicted in the 1985 IMAX movie The Dream Is Alive.

Findings

Significantly, the SMM's ACRIM instrument package showed that contrary to expectations, the Sun is actually brighter during the sunspot cycle maximum (when the greatest number of dark 'sunspots' appear). This is because sunspots are surrounded by bright features called faculae, which more than cancel the darkening effect of the sunspot.

The major scientific findings from the SMM are presented in several review articles in a monograph.

The SMM discovered ten sungrazing comets between 1987 and 1989.

References

Solar Maximum Mission Wikipedia


Similar TopicsACRIMSAT
STEREO
TRACE