In mathematics, the Smith normal form is a normal form that can be defined for any matrix (not necessarily square) with entries in a principal ideal domain (PID). The Smith normal form of a matrix is diagonal, and can be obtained from the original matrix by multiplying on the left and right by invertible square matrices. In particular, the integers are a PID, so one can always calculate the Smith normal form of an integer matrix. The Smith normal form is very useful for working with finitely generated modules over a PID, and in particular for deducing the structure of a quotient of a free module. It is named for the British mathematician Henry John Stephen Smith.
Contents
Definition
Let A be a nonzero m×n matrix over a principal ideal domain R. There exist invertible
and the diagonal elements
where
Algorithm
The first goal is to find invertible square matrices S and T such that the product S A T is diagonal. This is the hardest part of the algorithm. Once diagonality is achieved, it becomes relatively easy to put the matrix into Smith normal form. Phrased more abstractly, the goal is to show that, thinking of A as a map from
For a in R {0}, write δ(a) for the number of prime factors of a (these exist and are unique since any PID is also a unique factorization domain). In particular, R is also a Bézout domain, so it is a gcd domain and the gcd of any two elements satisfies a Bézout's identity.
To put a matrix into Smith normal form, one can repeatedly apply the following, where t loops from 1 to m.
Step I: Choosing a pivot
Choose jt to be the smallest column index of A with a non-zero entry, starting the search at column index jt-1+1 if t > 1.
We wish to have
Our chosen pivot is now at position (t, jt).
Step II: Improving the pivot
If there is an entry at position (k,jt) such that
By left-multiplication with an appropriate invertible matrix L, it can be achieved that row t of the matrix product is the sum of σ times the original row t and τ times the original row k, that row k of the product is another linear combination of those original rows, and that all other rows are unchanged. Explicitly, if σ and τ satisfy the above equation, then for
so that the matrix
is invertible, with inverse
Now L can be obtained by fitting
Step III: Eliminating entries
Finally, adding appropriate multiples of row t, it can be achieved that all entries in column jt except for that at position (t,jt) are zero. This can be achieved by left-multiplication with an appropriate matrix. However, to make the matrix fully diagonal we need to eliminate nonzero entries on the row of position (t,jt) as well. This can be achieved by repeating the steps in Step II for columns instead of rows, and using multiplication on the right by the transpose of the obtained matrix L. In general this will result in the zero entries from the prior application of Step III becoming nonzero again.
However, notice that the ideals generated by the elements at position (t,jt) form an ascending chain, because entries from a later step always divide entries from a previous step. Therefore, since R is a Noetherian ring (it is a PID), the ideals eventually become stationary and do not change. This means that at some stage after Step II has been applied, the entry at (t,jt) will divide all nonzero row or column entries before applying any more steps in Step II. Then we can eliminate entries in the row or column with nonzero entries while preserving the zeros in the already-zero row or column. At this point, only the block of A to the lower right of (t,jt) needs to be diagonalized, and conceptually the algorithm can be applied recursively, treating this block as a separate matrix. In other words, we can increment t by one and go back to Step I.
Final step
Applying the steps described above to the remaining non-zero columns of the resulting matrix (if any), we get an
Now we can move the null columns of this matrix to the right, so that the nonzero entries are on positions
The condition of divisibility of diagonal entries might not be satisfied. For any index
The value
So after finitely many applications of this operation no further application is possible, which means that we have obtained
Since all row and column manipulations involved in the process are invertible, this shows that there exist invertible
Applications
The Smith normal form is useful for computing the homology of a chain complex when the chain modules of the chain complex are finitely generated. For instance, in topology, it can be used to compute the homology of a simplicial complex or CW complex over the integers, because the boundary maps in such a complex are just integer matrices. It can also be used to determine the invariant factors that occur in the structure theorem for finitely generated modules over a principal ideal domain, which includes the fundamental theorem of finitely generated abelian groups.
Example
As an example, we will find the Smith normal form of the following matrix over the integers.
The following matrices are the intermediate steps as the algorithm is applied to the above matrix.
So the Smith normal form is
and the invariant factors are 2, 6 and 12.
Similarity
The Smith normal form can be used to determine whether or not matrices with entries over a common field are similar. Specifically two matrices A and B are similar if and only if the characteristic matrices
For example, with
A and B are similar because the Smith normal form of their characteristic matrices match, but are not similar to C because the Smith normal form of the characteristic matrices do not match.