![]() | ||
According to the classical theories of elastic or plastic structures made from a material with non-random strength (ft), the nominal strength (σN) of a structure is independent of the structure size (D) when geometrically similar structures are considered. Any deviation from this property is called the size effect. For example, conventional strength of materials predicts that a large beam and a tiny beam will fail at the same stress if they are made of the same material. In the real world, because of size effects, a larger beam will fail at a lower stress than a smaller beam.
Contents
- Statistical Theory of Size Effect in Brittle Structures
- Energetic Size Effect
- Type 1 Structures that fail at crack initiation
- Type 2 Structures in which a large crack or notch exists
- Size Effect in Cohesive Crack Crack Band and Nonlocal Models
- Fractal Aspects of Size Effect
- Practical Importance
- References
The structural size effect concerns structures made of the same material, with the same microstructure. It must be distinguished from the size effect of material inhomogeneities, particularly the Hall-Petch effect, which describes how the material strength increases with decreasing grain size in polycrystalline metals.
The size effect can have two causes:
- statistical, due to material strength randomness, and
- energetic (and non-statistical), due to energy release when a large crack or a large fracture process zone (FPZ) containing damaged material develops before the maximum load is reached.
The limitations of elasticity theory are discussed in good textbooks on the topic. The same holds for plasticity theory. Modern computational models do not have these limitations and they predict structural strength correctly for any size. The scientists that develop new material models make sure that the results agree with the size effect laws. The engineers that design exceptionally large structures make sure that the calculations do not include a size effect mistake.
Statistical Theory of Size Effect in Brittle Structures
The statistical size effect occurs for a broad class of brittle structures that follow the weakest-link model. This model means that macro-fracture initiation from one material element, or more precisely one representative volume element (RVE), causes the whole structure to fail, like the failure of one link in a chain (Fig. 1a). Since the material strength is random, the strength of the weakest material element in the structure (Fig. 1a) is likely to decrease with increasing structure size
Denoting the failure probabilities of structure as
The key is the left tail of the distribution of
Eq. 2 is the cumulative Weibull distribution with scale parameter
The RVE is here defined as the smallest material volume whose failure suffices to make the whole structure fail. From experience, the structure is sufficiently larger than one RVE if the equivalent number
From Eq. 2 one can show that the mean strength and the coefficient of variation of strength are obtained as follows:
(where
Weibull parameter
Energetic Size Effect
The fact that the Weibull size effect is a power law means that it is self-similar, i.e., no characteristic structure size
A pronounced energetic size effect occurs in shear, torsional and punching failures of reinforced concrete, in pullout of anchors from concrete, in compression failure of slender reinforced concrete columns and prestressed concrete beams, in compression and tensile failures of fiber-polymer composites and sandwich structures, and in the failures of all the aforementioned quasibrittle materials. One may distinguish two basic types of this size effect.
Type 1: Structures that fail at crack initiation
When the macro-crack initiates from one RVE whose size is not negligible compared to the structure size, the deterministic size effect dominates over the statistical size effect. What causes the size effect is a stress redistribution in the structure (Fig. 2c) due to damage in the initiating RVE, which is typically located at fracture surface.
A simple intuitive justification of this size effect may be given by considering the flexural failure of an unnotched simply supported beam under a concentrated load
which is the law of Type 1 deterministic size effect (Fig. 2a). The purpose of the approximation made is: (a) to prevent
A fundamental derivation of Eq. 5 for a general structural geometry has been given by applying dimensional analysis and asymptotic matching to the limit case of energy release when the initial macro-crack length tends to zero. For general structures, the following effective size may be substituted in Eq. (5):
where
Eq. 5 cannot apply for large sizes because it approaches for
where
The probabilistic theory of Type 1 size effect can be derived from fracture nano-mechanics. Kramer’s transition rate theory shows that, on the nano-scale, the far-left tail of the probability distribution of nano-scale strength
For structures with
This theory has also been extended to the size effect on the Evans and Paris laws of crack growth in quasibrittle materials, and to the size effect on the static and fatigue lifetimes. It appeared that the size effect on the lifetime is much stronger than it is on the short-time strength (tail exponent
Type 2: Structures in which a large crack or notch exists
The strongest possible size effect occurs for specimens with similar deep notches (Fig. 4b), or for structures in which a large crack, similar for different sizes, forms stably before the maximum load is reached. Because the location of fracture initiation is predetermined to occur at the crack tip and thus cannot sample the random strengths of different RVEs, the statistical contribution to the mean size effect is negligible. Such behavior is typical of reinforced concrete, damaged fiber-reinforced polymers and some compressed unreinforced structures.
The energetic size effect may be intuitively explained by considering the panel in Fig. 1c,d, initially under a uniform stress equal to
(Fig. 4c,d) where
For more complex geometries such an intuitive derivation is not possible. However, dimensional analysis coupled with asymptotic matching showed that Eq. 8 is applicable in general, and that the dependence of its parameters on the structure geometry has approximately the following form:
where
Size Effect in Cohesive Crack, Crack Band and Nonlocal Models
Numerical simulations of failure by finite element codes can capture the energetic (or deterministic) size effect only if the material law relating the stress to deformation possesses a characteristic length. This was not the case for the classical finite element codes with a material characterized solely by stress-strain relations.
One simple enough computational method is the cohesive (or fictitious) crack model, in which it is assumed that the stress
is the material characteristic length giving rise to the deterministic size effect. An even simpler method is the crack-band model, in which the cohesive crack is replaced in simulations by a crack band of width
When
Fractal Aspects of Size Effect
The fractal properties of material, including the fractal aspect of crack surface roughness and the lacunar fractal aspect of pore structure, may have a role in the size effect in concrete, and may affect the fracture energy of material. However, the fractal properties have yet not been experimentally documented for a broad enough scale and the problem has not yet been studied in depth comparable to the statistical and energetic size effects. The main obstacle to the practical consideration of a fractal influence on the size effect is that, if calibrated for one structure geometry, it is not clear how infer the size effect for another geometry. The pros and cons were discussed, e.g., by Carpinteri et al. (1994, 2001) and Bažant and Yavari (2005).
Practical Importance
Taking the size effect into account is essential for safe prediction of strength of large concrete bridges, nuclear containments, roof shells, tall buildings, tunnel linings, large load-bearing parts of aircraft, spacecraft and ships made of fiber-polymer composites, wind turbines, large geotechnical excavations, earth and rock slopes, floating sea ice carrying loads, oil platforms under ice forces, etc. Their design depends on the material properties measured on much smaller laboratory specimens. These properties must be extrapolated to sizes greater by one or two orders of magnitude. Even if an expensive full-scale failure test, for example a failure test of the rudder of a very large aircraft, can be carried out, it is financially prohibitive to repeat it thousand times to obtain the statistical distribution of load capacity. Such statistical information, underlying the safety factors, is obtainable only by proper extrapolation of laboratory tests.
The size effect is gaining in importance as larger and larger structures, of more and more slender forms, are being built. The safety factors, of course, give large safety margins—so large that even for the largest civil engineering structures the classical deterministic analysis based on the mean material properties normally yields failure loads smaller than the maximum design loads. For this reasons, the size effect on the strength in brittle failures of concrete structures and structural laminates has long been ignored. Then, however, the failure probability, which is required to be
Another application is the testing of the fracture energy and characteristic material length. For quasibrittle materials, measuring the size effect on the peak loads (and on the specimen softening after the peak load) is the simplest approach.
Knowing the size effect is also important in the reverse sense—for micrometer scale devices if they are designed partly of fully on the basis of material properties measured more conveniently on the scale of 0.01m to 0.1m.