Suvarna Garge (Editor)

Shikimate pathway

Updated on
Edit
Like
Comment
Share on FacebookTweet on TwitterShare on LinkedInShare on Reddit
Shikimate pathway

The shikimate pathway (shikimic acid pathway) is a seven step metabolic route used by bacteria, fungi, algae, some protozoan parasites and plants for the biosynthesis of folates and aromatic amino acids (phenylalanine, tyrosine, and tryptophan). This pathway is not found in animals, which require these amino acids, hence the products of this pathway represent essential amino acids that must be obtained from bacteria or plants (or animals which eat bacteria or plants) in the animal's diet.

The first enzyme involved is the shikimate kinase, an enzyme that catalyzes the ATP-dependent phosphorylation of shikimate to form shikimate 3-phosphate. Shikimate 3-phosphate is then coupled with phosphoenol pyruvate to give 5-enolpyruvylshikimate-3-phosphate via the enzyme 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase.

Then 5-enolpyruvylshikimate-3-phosphate is transformed into chorismate by a chorismate synthase.

Prephenic acid is then synthesized by a Claisen rearrangement of chorismate by Chorismate mutase.

Prephenate is oxidatively decarboxylated with retention of the hydroxyl group to give p-hydroxyphenylpyruvate, which is transaminated using glutamate as the nitrogen source to give tyrosine and α-ketoglutarate.

References

Shikimate pathway Wikipedia