![]() | ||
In set theory, the Schröder–Bernstein theorem (named after Felix Bernstein and Ernst Schröder, also known as Cantor–Bernstein theorem, or Cantor–Schröder–Bernstein after Georg Cantor who first published it without proof) states that, if there exist injective functions f : A → B and g : B → A between the sets A and B, then there exists a bijective function h : A → B. In terms of the cardinality of the two sets, this means that if |A| ≤ |B| and |B| ≤ |A|, then |A| = |B|; that is, A and B are equipollent. This is a useful feature in the ordering of cardinal numbers.
Contents
This theorem does not rely on the axiom of choice. However, its various proofs are non-constructive, as they depend on the law of excluded middle, and are therefore rejected by intuitionists.
Proof
The following proof is attributed to Julius König.
Assume without loss of generality that A and B are disjoint. For any a in A or b in B we can form a unique two-sided sequence of elements that are alternately in A and B, by repeatedly applying
For any particular a, this sequence may terminate to the left or not, at a point where
By the fact that
Call a sequence an A-stopper if it stops at an element of A, or a B-stopper if it stops at an element of B. Otherwise, call it doubly infinite if all the elements are distinct or cyclic if it repeats. See the picture for examples.
Original proof
An earlier proof by Cantor relied, in effect, on the axiom of choice by inferring the result as a corollary of the well-ordering theorem. The argument given above shows that the result can be proved without using the axiom of choice.
Furthermore, there is a proof which uses Tarski's fixed point theorem.
History
The traditional name "Schröder–Bernstein" is based on two proofs published independently in 1898. Cantor is often added because he first stated the theorem in 1887, while Schröder's name is often omitted because his proof turned out to be flawed while the name of Richard Dedekind, who first proved it, is not connected with the theorem. According to Bernstein, Cantor had suggested the name equivalence theorem (Äquivalenzsatz).
Both proofs of Dedekind are based on his famous memoir Was sind und was sollen die Zahlen? and derive it as a corollary of a proposition equivalent to statement C in Cantor's paper, which reads A ⊆ B ⊆ C and |A|=|C| implies |A|=|B|=|C|. Cantor observed this property as early as 1882/83 during his studies in set theory and transfinite numbers and was therefore (implicitly) relying on the Axiom of Choice.