Supriya Ghosh (Editor)

RUNX2

Updated on
Edit
Like
Comment
Share on FacebookTweet on TwitterShare on LinkedInShare on Reddit
Species
  
Human

Entrez
  
860

Human
  
Mouse

Ensembl
  
ENSG00000124813

RUNX2

Aliases
  
RUNX2, AML3, CBF-alpha-1, CBFA1, CCD, CCD1, CLCD, OSF-2, OSF2, PEA2aA, PEBP2aA, runt related transcription factor 2

External IDs
  
OMIM: 600211 MGI: 99829 HomoloGene: 68389 GeneCards: RUNX2

Runt-related transcription factor 2 (RUNX2) also known as core-binding factor subunit alpha-1 (CBF-alpha-1) is a protein that in humans is encoded by the RUNX2 gene. RUNX2 is a key transcription factor associated with osteoblast differentiation.

Contents

Function

This protein is a member of the RUNX family of transcription factors and has a Runt DNA-binding domain. It is essential for osteoblastic differentiation and skeletal morphogenesis and acts as a scaffold for nucleic acids and regulatory factors involved in skeletal gene expression. The protein can bind DNA both as a monomer or, with more affinity, as a subunit of a heterodimeric complex. Transcript variants of the gene that encode different protein isoforms result from the use of alternate promoters as well as alternate splicing.

Differences in RUNX2 are hypothesized to be the cause of the skeletal differences between modern humans and early humans such as Neanderthals. These differences include a different shape of the skull, a bell-shaped chest in Neanderthals, etc.

The binding interactions of RUNX2 change as cells go through mitosis, with binding affinity increasing as chromosomes condense and then decreasing through subsequent mitotic phases. The increased residence of RUNX2 at mitotic chromosomes may reflect its epigenetic function in "bookmarking" of target genes in cancer cells.

Pathology

Mutations in Cbfa1/Runx2 are associated with the disease Cleidocranial dysostosis.

Co-factors

Runx proteins represent the alpha DNA binding subunit of a heteromeric protein complex that also includes the non-DNA binding beta-subunit which increases the DNA binding affinity of the alpha subunit. In addition, there is a large cohort of regulatory proteins that bind to the C-terminus of Runx2 to modify its transcriptional function.

Interactions

RUNX2 has been shown to interact with:

miR-133 directly inhibits Runx2.

References

RUNX2 Wikipedia


Similar Topics