Suvarna Garge (Editor)

Quadratically constrained quadratic program

Updated on
Edit
Like
Comment
Share on FacebookTweet on TwitterShare on LinkedInShare on Reddit

In mathematical optimization, a quadratically constrained quadratic program (QCQP) is an optimization problem in which both the objective function and the constraints are quadratic functions. It has the form

Contents

minimize 1 2 x T P 0 x + q 0 T x subject to 1 2 x T P i x + q i T x + r i 0 for  i = 1 , , m , A x = b ,

where P0, … Pm are n-by-n matrices and xRn is the optimization variable.

If P0, … Pm are all positive semidefinite, then the problem is convex. If these matrices are neither positive nor negative semidefinite, the problem is non-convex. If P1, … Pm are all zero, then the constraints are in fact linear and the problem is a quadratic program.

Hardness

Solving the general case is an NP-hard problem. To see this, note that the two constraints x1(x1 − 1) ≤ 0 and x1(x1 − 1) ≥ 0 are equivalent to the constraint x1(x1 − 1) = 0, which is in turn equivalent to the constraint x1 ∈ {0, 1}. Hence, any 0–1 integer program (in which all variables have to be either 0 or 1) can be formulated as a quadratically constrained quadratic program. Since 0–1 integer programming is NP-hard in general, QCQP is also NP-hard.

Relaxation

There are two main relaxations of QCQP: using semidefinite programming (SDP), and using the reformulation-linearization technique (RLT).

Semidefinite programming

When P0, … Pm are all positive-definite matrices, the problem is convex and can be readily solved using interior point methods, as done with semidefinite programming.

Example

Max Cut is a problem in graph theory, which is NP-hard. Given a graph, the problem is to divide the vertices in two sets, so that as many edges as possible go from one set to the other. Max Cut can be formulated as a QCQP, and SDP relaxation of the dual provides good lower bounds.

References

Quadratically constrained quadratic program Wikipedia


Similar Topics