Neha Patil (Editor)

Project Gemini

Updated on
Edit
Like
Comment
Share on FacebookTweet on TwitterShare on LinkedInShare on Reddit
Country of origin
  
United States

Status
  
completed

Program duration
  
1961–1966

Completed
  
1966

Last flight
  
11 November 1966

Responsible organization
  
NASA

Cost
  
$1.3 billion (1967)

Started
  
1965

First flight
  
8 April 1964

Project Gemini httpsuploadwikimediaorgwikipediacommons88

Purpose
  
Extended duration manned Earth orbit Extravehicular activity Space rendezvous and docking

Missions
  
Gemini 4, Gemini 3, Gemini 7, Gemini 8, Gemini 12

Astronauts
  
Neil Armstrong, Buzz Aldrin, Jim Lovell, Gus Grissom, Edward Higgins White

Nasaflix project gemini bridge to the moon movie


Project Gemini was NASA's second human spaceflight program. Conducted between projects Mercury and Apollo, Gemini started in 1961 and concluded in 1966. The Gemini spacecraft carried a two-astronaut crew. Ten Gemini crews flew low Earth orbit (LEO) missions between 1965 and 1966 putting the United States in the lead during the Cold War Space Race against the Soviet Union.

Contents

Project Gemini Project Gemini

Gemini's objective was the development of space travel techniques to support the Apollo mission to land astronauts on the Moon. It performed missions long enough for a trip to the Moon and back, perfected working outside the spacecraft with extra-vehicular activity (EVA), and pioneered the orbital maneuvers necessary to achieve space rendezvous and docking. With these new techniques proven by Gemini, Apollo could pursue its prime mission without doing these fundamental exploratory operations.

Project Gemini Remembering Project Gemini The Atlantic

All Gemini flights were launched from Launch Complex 19 (LC-19) at Cape Kennedy Air Force Station in Florida. Their launch vehicle was the Gemini–Titan II, a modified Intercontinental Ballistic Missile (ICBM). Gemini was the first program to use the newly built Mission Control Center at the Houston Manned Spacecraft Center for flight control.

Project Gemini What Was the Gemini Program NASA

The astronaut corps that supported Project Gemini included the "Mercury Seven", "The New Nine", and the 1963 astronaut class. During the program, three astronauts died in air crashes during training, including the prime crew for Gemini 9. This mission was performed by the backup crew, the only time that had happened in NASA's history to date.

Gemini was robust enough that the United States Air Force planned to use it for the Manned Orbital Laboratory (MOL) program, which was later canceled. Gemini's chief designer, Jim Chamberlin, also made detailed plans for cislunar and lunar landing missions in late 1961. He believed Gemini could perform lunar operations before Project Apollo, and cost less. NASA's administration did not approve those plans. In 1969, McDonnell-Douglas proposed a "Big Gemini" that could have been used to shuttle up to 12 astronauts to the planned space stations in the Apollo Applications Project (AAP). The only AAP project funded was Skylab – which used existing spacecraft and hardware – thereby eliminating the need for Big Gemini.

Program origins and objectives

After the existing Apollo program was chartered by President John F. Kennedy on May 25, 1961, to land men on the Moon, it became evident to NASA officials that a follow-on to the Mercury program was required to develop certain spaceflight capabilities in support of Apollo.

Specifically, Jim Chamberlin, the head of engineering at the Space Task Group (STG), was already assigned to start working on a bridge program between Mercury and Apollo in February 1961. He presented two initial versions of Gemini at a NASA retreat at Wallops Island in March 1961. Scale models of Mercury Mark II were shown in July 1961 at McDonnell Aircraft Corporation's offices in St. Louis. NASA approved Project Gemini on December 7, 1961. The McDonnell corporation was contracted to build it on December 22, 1961.

When it was publicly announced on January 3, 1962, it was formally re-christened Project Gemini. Gemini in Latin means "twins" or "double", which reflected that the spacecraft would hold two astronauts. Gemini is also the name of the third constellation of the Zodiac and its twin stars, Castor and Pollux.

The major objectives were:

  • To demonstrate endurance of humans and equipment in spaceflight for extended periods, at least eight days required for a Moon landing, to a maximum of two weeks
  • To effect rendezvous and docking with another vehicle, and to maneuver the combined spacecraft using the propulsion system of the target vehicle
  • To demonstrate Extra-Vehicular Activity (EVA), or space-"walks" outside the protection of the spacecraft, and to evaluate the astronauts' ability to perform tasks there
  • To perfect techniques of atmospheric reentry and touchdown at a pre-selected location on land
  • Team

    The two-crew member carrying Gemini capsule was designed by a Canadian, Jim Chamberlin. He was previously the chief aerodynamicist on Avro Canada's Avro Arrow fighter interceptor program. Chamberlin joined NASA along with 25 senior Avro engineers after cancellation of the Arrow program, and became head of the U.S. Space Task Group’s engineering division in charge of Gemini. The prime contractor was McDonnell Aircraft Corporation, which was also the prime contractor for the Project Mercury capsule.

    Astronaut Gus Grissom was heavily involved in the development and design of the Gemini spacecraft (the other Mercury astronauts dubbed the Gemini spacecraft the "Gusmobile"). Grissom writes in his posthumous 1968 book Gemini! that the realization of Project Mercury's end and the unlikelihood of his having another flight in that program prompted him to focus all of his efforts on the upcoming Gemini program.

    The Gemini program was managed by the Manned Spacecraft Center, located in Houston, Texas, under direction of the Office of Manned Space Flight, NASA Headquarters, Washington, D.C. Dr. George E. Mueller, Associate Administrator of NASA for Manned Space Flight, served as acting director of the Gemini program. William C. Schneider, Deputy Director of Manned Space Flight for Mission Operations, served as mission director on all Gemini flights beginning with Gemini 6A.

    Guenter Wendt was a McDonnell engineer who supervised launch preparations for both the Mercury and Gemini programs and would go on to do the same when the Apollo program launched crews. His team was responsible for completion of the complex pad close-out procedures just prior to spacecraft launch, and he was the last person the astronauts would see prior to closing the hatch. The astronauts appreciated his taking absolute authority over, and responsibility for, the condition of the spacecraft and developed a good-humored rapport with him.

    Spacecraft

    NASA selected McDonnell Aircraft, which had been the prime contractor for the Project Mercury capsule, in 1961 to build the Gemini capsule, the first of which was delivered in 1963. The spacecraft was 18 feet 5 inches (5.61 m) long and 10 feet (3.0 m) wide, with a launch weight varying from 7,100 to 8,350 pounds (3,220 to 3,790 kg).

    The Gemini crew capsule (referred to as the Reentry Module) was essentially an enlarged version of the Mercury capsule. Unlike Mercury, the retrorockets, electrical power, propulsion systems, oxygen, and water were located in a detachable Adapter Module behind the Reentry Module. A major design improvement in Gemini was to locate all internal spacecraft systems in modular components, which could be independently tested and replaced when necessary, without removing or disturbing other already tested components.

    Reentry module

    Many components in the capsule itself were reachable through their own small access doors. Unlike Mercury, Gemini used completely solid-state electronics, and its modular design made it easy to repair.

    Gemini's emergency launch escape system did not use an escape tower powered by a solid-fuel rocket, but instead used aircraft-style ejection seats. The tower was heavy and complicated, and NASA engineers reasoned that they could do away with it as the Titan II's hypergolic propellants would burn immediately on contact. A Titan II booster explosion had a smaller blast effect and flame than on the cryogenically fueled Atlas and Saturn. Ejection seats were sufficient to separate the astronauts from a malfunctioning launch vehicle. At higher altitudes, where the ejection seats could not be used, the astronauts would return inside the spacecraft, which would separate from the launch vehicle.

    The main proponent of using ejection seats was James Chamberlin, head of the engineering division of NASA's Space Force Task Group. Chamberlin had never liked the Mercury escape tower and wished to use a simpler alternative that would also reduce weight. He reviewed several films of Atlas and Titan II ICBM failures, which he used to estimate the approximate size of a fireball produced by an exploding launch vehicle and from this he gauged that the Titan II would produce a much smaller explosion, thus the spacecraft could get away with ejection seats.

    Maxime Faget, the designer of the Mercury LES, was on the other hand less-than-enthusiastic about this setup. Aside from the possibility of the ejection seats seriously injuring the astronauts, they would also only be usable for about 40 seconds after liftoff, by which point the booster would be attaining Mach 1 speed and ejection was no longer possible. He was also concerned about the astronauts being launched through the Titan's exhaust plume if they ejected in-flight and later added that "The best thing about Gemini was that they never had to make an escape."

    Gemini was the first astronaut-carrying spacecraft to include an onboard computer, the Gemini Guidance Computer, to facilitate management and control of mission maneuvers. This computer, sometimes called the Gemini Spacecraft On-Board Computer (OBC), was very similar to the Saturn Launch Vehicle Digital Computer. The Gemini Guidance Computer weighed 58.98 pounds (26.75 kg). Its core memory had 4096 addresses, each containing a 39-bit word composed of three 13-bit "syllables". All numeric data was 26-bit two's-complement integers (sometimes used as fixed-point numbers), either stored in the first two syllables of a word or in the accumulator. Instructions (always with a 4-bit opcode and 9 bits of operand) could go in any syllable.

    Unlike Mercury, the Gemini used in-flight radar and an artificial horizon—devices similar to those used in the aviation industry.

    The original intention for Gemini was to land on solid ground instead of at sea, using a Rogallo wing rather than a parachute, with the crew seated upright controlling the forward motion of the craft. To facilitate this, the airfoil did not attach just to the nose of the craft, but to an additional attachment point for balance near the heat shield. This cord was covered by a strip of metal which ran between the twin hatches. This design was ultimately dropped, and parachutes were used to make a sea landing as in Mercury. The capsule was suspended at an angle closer to horizontal, so that a side of the heat shield contacted the water first. This eliminated the need for the landing bag cushion used in the Mercury capsule.

    Adapter module

    The adapter module in turn was separated into a Retro module and an Equipment module.

    Retro module

    The Retro module contained four solid-fuel retrorockets, each spherical in shape except for its rocket nozzle, which were structurally attached to two beams that reached across the diameter of the retro module, crossing at right angles in the center. Re-entry began with the retrorockets firing one at a time. Abort procedures at certain periods during lift-off would cause them to fire at the same time, thrusting the Descent module away from the Titan rocket.

    Equipment module

    Gemini was equipped with an Orbit Attitude and Maneuvering System (OAMS), containing sixteen thrusters for translation control in all three perpendicular axes (forward/backward, left/right, up/down), in addition to attitude control (pitch, yaw, and roll angle orientation) as in Mercury. Translation control allowed changing orbital inclination and altitude, necessary to perform space rendezvous with other craft, and docking with the Agena Target Vehicle (ATV), with its own rocket engine which could be used to perform greater orbit changes.

    Early short-duration missions had their electrical power supplied by batteries; later endurance missions used the first fuel cells in manned spacecraft.

    Gemini was in some regards more advanced than Apollo because the latter program began almost a year earlier. It became known as a "pilot's spacecraft" due to its assortment of jet fighter-like features, in no small part due to Gus Grissom's influence over the design, and it was at this point where the American manned space program clearly began showing its superiority over that of the Soviet Union with long duration flight, rendezvous, and extravehicular capability. The Soviet Union during this period was developing the Soyuz spacecraft intended to take cosmonauts to the Moon, but political and technical problems began to get in the way, leading to the ultimate end of their manned lunar program.

    Launch vehicle

    The Titan II had debuted in 1962 as the Air Force's second-generation ICBM to replace the Atlas. By using hypergolic fuels, it could be stored for long periods of time and be easily readied for launch in addition to being a simpler design with fewer components, the only caveat being that the propellant mix (nitrogen tetroxide and hydrazine) was extremely toxic compared to the Atlas's liquid oxygen/RP-1. However, the Titan had considerable difficulty being man-rated due to early problems with pogo oscillation. The launch vehicle was guided by its own ASC-15 guidance computer, separate from the Gemini spacecraft's computer.

    Astronauts

    Deke Slayton, as director of flight crew operations, had primary responsibility for assigning crews for the Gemini program. Each flight had a primary crew and backup crew, and the backup crew would rotate to primary crew status three flights later. Slayton intended for first choice of mission commands to be given to the four remaining active astronauts of the Mercury Seven: Alan Shepard, Grissom, Cooper, and Schirra. (John Glenn had retired from NASA in January 1964 and Scott Carpenter, who was blamed by some in NASA management for the problematic reentry of Aurora 7, was on leave to participate in the Navy's SEALAB project and was grounded from flight in July 1964 due to an arm injury sustained in a motorbike accident. Slayton himself continued to be grounded due to a heart problem.)

    Titles used for the left-hand (command) and right-hand seat crew positions were taken from the U.S. Air Force pilot ratings, Command Pilot and Pilot. Sixteen astronauts flew on 10 manned Gemini missions:

    Crew selection

    In late 1963, Slayton selected Shepard and Stafford for Gemini 3, McDivitt and White for Gemini 4, and Schirra and Young for Gemini 5 (which was to be the first Agena rendezvous mission). The backup crew for Gemini 3 was Grissom and Borman, who were also slated for Gemini 6, to be the first long-duration mission. Finally Conrad and Lovell were assigned as the backup crew for Gemini 4.

    Delays in the production of the Agena Target Vehicle caused the first rearrangement of the crew rotation. The Schirra and Young mission was bumped to Gemini 6 and they became the backup crew for Shepard and Stafford. Grissom and Borman then had their long-duration mission assigned to Gemini 5.

    The second rearrangement occurred when Shepard developed Ménière's disease, an inner ear problem. Grissom was then moved to command Gemini 3. Slayton felt that Young was a better personality match with Grissom and switched Stafford and Young. Finally, Slayton tapped Cooper to command the long-duration Gemini 5. Again for reasons of compatibility, he moved Conrad from backup commander of Gemini 4 to pilot of Gemini 5, and Borman to backup command of Gemini 4. Finally he assigned Armstrong and Elliot See to be the backup crew for Gemini 5. The third rearrangement of crew assignment occurred when Slayton felt that See wasn't up to the physical demands of EVA on Gemini 8. He reassigned See to be the prime commander of Gemini 9 and put Scott as pilot of Gemini 8 and Charles Bassett as the pilot of Gemini 9.

    The fourth and final rearrangement of the Gemini crew assignment occurred after the deaths of See and Bassett when their trainer jet crashed, coincidentally into a McDonnell building which held their Gemini 9 capsule in St. Louis. The backup crew of Stafford and Cernan was then moved up to the new prime crew of the re-designated Gemini 9A. Lovell and Aldrin were moved from being the backup crew of Gemini 10 to be the backup crew of Gemini 9. This cleared the way through the crew rotation for Lovell and Aldrin to become the prime crew of Gemini 12.

    Along with the deaths of Grissom, White, and Roger Chaffee in the fire of Apollo 1, this final arrangement helped determine the makeup of the first seven Apollo crews, and who would be in position for a chance to be the first to walk on the Moon.

    Missions

    In 1964 and 1965 two Gemini missions were flown without crews to test out systems and the heat shield. These were followed by ten flights with crews in 1965 and 1966. All were launched by Titan II launch vehicles. Some highlights from the Gemini program:

  • Edward H. White became the first American to make an extravehicular activity (EVA, or "space walk"), on June 3, 1965 during Gemini 4.
  • Gemini 5 demonstrated the 8-day endurance necessary for an Apollo lunar mission with the first use of fuel cells to generate its electrical power.
  • Gemini 6A and 7 accomplished the first space rendezvous in December 1965, and Gemini 7 set a 14-day endurance record.
  • Gemini 8 achieved the first space docking with an unmanned Agena Target Vehicle.
  • Gemini 11 set a manned Earth orbital altitude record of 739.2 nautical miles (1,369.0 km) in September 1966, using the propulsion system of its Agena target vehicle. This record still stands as of 2014.
  • Edwin "Buzz" Aldrin on Gemini 12 became the first space traveller to prove that useful work could be done outside a spacecraft without life-threatening exhaustion.
  • Rendezvous in orbit is not a straightforward maneuver. Should a spacecraft increase its speed to catch up with another, the result is that it goes into a higher and slower orbit and the distance thereby increases. The right procedure is to slow down and go to a lower orbit first, and then later to increase speed and go to the same orbit as the other. To practice these maneuvers special rendezvous and docking simulators were built for the astronauts.

    Gemini-Titan launches and serial numbers

    The Gemini-Titan II launch vehicle was adapted by NASA from the U.S. Air Force Titan II ICBM. (Similarly, the Mercury-Atlas launch vehicle had been adapted from the USAF Atlas missile.) The Gemini-Titan II rockets were assigned Air Force serial numbers, which were painted in four places on each Titan II (on opposite sides on each of the first and second stages). USAF crews maintained Launch Complex 19 and prepared and launched all of the Gemini-Titan II launch vehicles. Data and experience operating the Titans was of value to both the U.S. Air Force and NASA.

    The USAF serial numbers assigned to the Gemini-Titan launch vehicles are given in the tables above. Fifteen Titan IIs were ordered in 1962 so the serial is "62-12XXX", but only "12XXX" is painted on the Titan II. The order for the last three of the 15 launch vehicles was canceled on July 30, 1964, and they were never built. Serial numbers were, however, assigned to them prospectively: 12568 - GLV-13; 12569 - GLV-14; and 12570 - GLV-15.

    Program cost

    From 1962 to 1967, Gemini cost $1.3 billion in 1967 dollars. In January 1969, a NASA report to the US Congress estimating the costs for Mercury, Gemini, and Apollo (through the first manned Moon landing) included $1.2834 billion for Gemini, broken down to $797.4 million for spacecraft, $409.8 million for launch vehicles, and $76.2 million for support.

    Spacecraft

  • Gemini 1: Disintegrated (intentionally) upon re-entry to the atmosphere
  • Gemini 2: Air Force Space & Missile Museum, Cape Canaveral Air Force Station, Florida
  • Gemini III: Grissom Memorial, Spring Mill State Park, Mitchell, Indiana
  • Gemini IV: National Air and Space Museum, Washington, D.C.
  • Gemini V: Johnson Space Center, NASA, Houston, Texas
  • Gemini VI: Oklahoma History Center, Oklahoma City, Oklahoma
  • Gemini VII: Steven F. Udvar-Hazy Center, Chantilly, Virginia
  • Gemini VIII: Armstrong Air and Space Museum, Wapakoneta, Ohio
  • Gemini IX: Kennedy Space Center, NASA, Merritt Island, Florida
  • Gemini X: Kansas Cosmosphere and Space Center, Hutchinson, Kansas
  • Gemini XI: California Museum of Science and Industry, Los Angeles, California
  • Gemini XII: Adler Planetarium, Chicago, Illinois
  • Trainers

  • Gemini 3A —St. Louis Science Center, St. Louis, Missouri.
  • Gemini MOL-B —National Museum of the United States Air Force, Wright-Patterson Air Force Base, Dayton, Ohio
  • Gemini Trainer —U.S. Space & Rocket Center, Huntsville, Alabama
  • Gemini Trainer —Goddard Space Flight Center (Visitor Center), NASA, Greenbelt, Maryland
  • Gemini Trainer —Kentucky Science Center, Louisville, Kentucky
  • 6165 —National Air and Space Museum, Washington D.C. (not on display)
  • El Kabong —Kalamazoo Air Museum, Kalamazoo, Michigan
  • Gemini Trainer —Kalamazoo Air Museum, Kalamazoo, Michigan
  • TTV-2 Royal Museum, Edinburgh, Scotland
  • Trainer —Pate Museum of Transportation, Fort Worth, Texas
  • MSC 313 —Private residence, San Jose, California
  • Rogallo Test Vehicle —White Sands Space Harbor, White Sands, New Mexico
  • TTV-1 —Steven F. Udvar-Hazy Center, Chantilly, Virginia
  • unnamed —Air Force Space & Missile Museum, Cape Canaveral Air Force Station, Florida
  • unnamed —Air Force Space & Missile Museum, Cape Canaveral Air Force Station, Florida
  • Ingress/Egress Trainer —U.S. Space & Rocket Center, Huntsville, Alabama
  • MSC-307 —USS Hornet Museum, former NAS Alameda, Alameda, California
  • Advanced Gemini

    McDonnell Aircraft, the main contractor for Mercury and Gemini, was also one of the original bidders on the prime contract for Apollo, but lost out to North American Aviation. McDonnell later sought to extend the Gemini program by proposing a derivative which could be used to fly a cislunar mission and even achieve a manned lunar landing earlier and at less cost than Apollo, but these proposals were rejected by NASA.

    A range of applications were considered for Advanced Gemini missions, including military flights, space station crew and logistics delivery, and lunar flights. The Lunar proposals ranged from reusing the docking systems developed for the Agena Target Vehicle on more powerful upper stages such as the Centaur, which could propel the spacecraft to the Moon, to complete modifications of the Gemini to enable it to land on the lunar surface. Its applications would have ranged from manned lunar flybys before Apollo was ready, to providing emergency shelters or rescue for stranded Apollo crews, or even replacing the Apollo program.

    Some of the Advanced Gemini proposals used "off-the-shelf" Gemini spacecraft, unmodified from the original program, while others featured modifications to allow the spacecraft to carry more crew, dock with space stations, visit the Moon, and perform other mission objectives. Other modifications considered included the addition of wings or a parasail to the spacecraft, in order to enable it to make a horizontal landing.

    Big Gemini

    Big Gemini (or "Big G") was another proposal by McDonnell Douglas made in August 1969. It was intended to provide large-capacity, all-purpose access to space, including missions that ultimately used Apollo or the Space Shuttle.

    The study was performed to generate a preliminary definition of a logistic spacecraft derived from Gemini that would be used to resupply an orbiting space station. Land-landing at a preselected site and refurbishment and reuse were design requirements. Two baseline spacecraft were defined: a nine-man minimum modification version of the Gemini B called Min-Mod Big G and a 12-man advanced concept, having the same exterior geometry but with new, state-of-the-art subsystems, called Advanced Big G. Three launch vehicles-Saturn IB, Titan IIIM, and Saturn INT-20 (S-IC/S-IVB) were investigated for use with the spacecraft.

    Military applications

    The Air Force had an interest in the Gemini system, and decided to use its own modification of the spacecraft as the crew vehicle for the Manned Orbital Laboratory. To this end, the Gemini 2 spacecraft was refurbished and flown again atop a mockup of the MOL, sent into space by a Titan IIIC. This was the first time a spacecraft went into space twice.

    The USAF also had the notion of adapting the Gemini spacecraft for military applications, such as crude observation of the ground (no specialized reconnaissance camera could be carried) and practicing making rendezvous with suspicious satellites. This project was called Blue Gemini. The USAF did not like the fact that Gemini would have to be recovered by the US Navy, so they intended for Blue Gemini eventually to use the airfoil and land on three skids, carried over from the original design of Gemini.

    At first some within NASA welcomed sharing of the cost with the USAF, but it was later agreed that NASA was better off operating Gemini by itself. Blue Gemini was canceled in 1963 by Secretary of Defense Robert McNamara, who decided that the NASA Gemini flights could conduct necessary military experiments. MOL was canceled by Secretary of Defense Melvin Laird in 1969, when it was determined that unmanned spy satellites could perform the same functions much more cost-effectively.

    In media

  • Two Gemini capsules (codenamed "Jupiter") are featured in the plot of the 1967 James Bond film You Only Live Twice.
  • References

    Project Gemini Wikipedia