Neha Patil (Editor)

Phosphorus triiodide

Updated on
Edit
Like
Comment
Share on FacebookTweet on TwitterShare on LinkedInShare on Reddit
Formula
  
PI3

Boiling point
  
200 °C

Density
  
4.18 g/cm³

Molar mass
  
411.6872 g/mol

Melting point
  
61.2 °C

Appearance
  
dark red solid

Phosphorus triiodide onyxmetcomimagecachedata201620208Phosphoru

Thermodynamicdata
  
Phase behavioursolid–liquid–gas

Pi3 lewis structure how to draw the lewis structure for pi3 phosphorus triiodide


Phosphorus triiodide (PI3) is an unstable red solid which reacts violently with water. It is a common misconception that PI3 is too unstable to be stored; it is, in fact, commercially available. It is widely used in organic chemistry for converting alcohols to alkyl iodides. It is also a powerful reducing agent. Note that phosphorus also forms a lower iodide, P2I4, but the existence of PI5 is doubtful at room temperature.

Contents

Properties

PI3 has essentially zero dipole moment in carbon disulfide solution, because the P-I bond has almost no dipole. The P-I bond is also weak; PI3 is much less stable than PBr3 and PCl3, with a standard enthalpy of formation for PI3 of only −46 kJ/ mol (solid). The phosphorus atom has an NMR chemical shift of 178 ppm (downfield of H3PO4).

Reactions

Phosphorus triiodide reacts vigorously with water, producing phosphorous acid (H3PO3) and hydroiodic acid (HI), along with smaller amounts of phosphine and P-P compounds. Alcohols likewise form alkyl iodides, this providing the main use for PI3.

PI3 is also a powerful reducing agent and deoxygenating agent. It reduces sulfoxides to thioethers, even at −78 °C. Meanwhile, heating a 1-iodobutane solution of PI3 with red phosphorus causes reduction to P2I4.

Preparation

The usual method or preparation is by the union of the elements, often by addition of iodine to a solution of white phosphorus in carbon disulfide:

P4 + 6 I2 → 4 PI3

Alternatively, PCl3 may be converted to PI3 by the action of hydrogen iodide or certain metal iodides.

Uses

Phosphorus triiodide is commonly used in the laboratory for the conversion of primary or secondary alcohols to alkyl iodides. The alcohol is frequently used as the solvent, on top of being the reactant. Often the PI3 is made in situ by the reaction of red phosphorus with iodine in the presence of the alcohol; for example, the conversion of methanol to give iodomethane:

PI3 + 3 CH
3
OH
→ 3 CH
3
I
+ H
3
PO
3

These alkyl iodides are useful compounds for nucleophilic substitution reactions, and for the preparation of Grignard reagents.

References

Phosphorus triiodide Wikipedia


Similar Topics