Rahul Sharma (Editor)

Particle detector

Updated on
Edit
Like
Comment
Share on FacebookTweet on TwitterShare on LinkedInShare on Reddit
Particle detector

In experimental and applied particle physics, nuclear physics, and nuclear engineering, a particle detector, also known as a radiation detector, is a device used to detect, track, and/or identify ionising particles, such as those produced by nuclear decay, cosmic radiation, or reactions in a particle accelerator. Detectors can measure the particle energy and other attributes such as momentum, spin, charge, in addition to merely registering the presence of the particle.

Contents

Examples and types

Many of the detectors invented and used so far are ionization detectors (of which gaseous ionization detectors and semiconductor detectors are most typical) and scintillation detectors; but other, completely different principles have also been applied, like Čerenkov light and transition radiation.

Historical examples

  • Bubble chamber
  • Wilson cloud chamber (diffusion chamber)
  • Photographic plates
  • Detectors for radiation protection

    The following types of particle detector are widely used for radiation protection, and are commercially produced in large quantities for general use within the nuclear, medical and environmental fields.

  • Gaseous ionization detectors
  • Geiger-Müller tube
  • Ionization chamber
  • Proportional counter
  • Scintillation counter
  • Semiconductor detectors
  • Dosimeters
  • Electroscopes (when used as portable dosimeters)
  • Commonly used detectors for particle and nuclear physics

  • Gaseous ionization detectors
  • Ionization chamber
  • Proportional counter
  • Multiwire Proportional Chamber
  • Drift chamber
  • Time projection chamber
  • Geiger-Müller tube
  • Spark chamber
  • Solid-state detectors
  • semiconductor detectors and variants including CCDs
  • solid-state track detectors
  • Cherenkov detector
  • RICH (Ring Imaging Cherenkov Detector)
  • Scintillation counter and associated Photomultiplier or Photodiode / Avalanche photodiode
  • Lucas cell
  • Time of flight detector
  • Semiconductor detector
  • Silicon Vertex Detector
  • Transition radiation detector
  • Calorimeters
  • Microchannel plate detectors
  • Neutron detectors
  • Modern detectors

    Modern detectors in particle physics combine several of the above elements in layers much like an onion.

    Research particle detectors

    Detectors designed for modern accelerators are huge, both in size and in cost. The term counter is often used instead of detector when the detector counts the particles but does not resolve its energy or ionization. Particle detectors can also usually track ionizing radiation (high energy photons or even visible light). If their main purpose is radiation measurement, they are called radiation detectors, but as photons are also (massless) particles, the term particle detector is still correct.

    At colliders

  • At CERN
  • for the LHC
  • CMS
  • ATLAS
  • ALICE
  • LHCb
  • for the LEP
  • Aleph[1]
  • Delphi[2]
  • L3
  • Opal[3]
  • for the SPS
  • The COMPASS Experiment
  • Gargamelle
  • NA61/SHINE
  • At Fermilab
  • for the Tevatron
  • CDF
  • D0
  • Mu2e
  • At DESY
  • for HERA
  • H1
  • HERA-B
  • HERMES
  • ZEUS
  • At BNL
  • for the RHIC
  • PHENIX
  • Phobos
  • STAR
  • At SLAC
  • for the PeP-II
  • BaBar
  • for the SLC
  • SLD
  • At Cornell
  • for CESR
  • CLEO
  • CUSB
  • At BINP
  • for the VEPP-2M and VEPP-2000
  • ND
  • SND
  • CMD
  • for the VEPP-4
  • KEDR
  • Others
  • MECO from UC Irvine
  • Under construction

  • For ILC
  • CALICE
  • Without colliders

  • Super-Kamiokande
  • AMANDA
  • CDMS
  • On spacecraft

  • JEDI
  • AMS
  • References

    Particle detector Wikipedia


    Similar Topics