Puneet Varma (Editor)

PRPF31

Updated on
Edit
Like
Comment
Share on FacebookTweet on TwitterShare on LinkedInShare on Reddit
Species
  
Human

Entrez
  
26121

Human
  
Mouse

Ensembl
  
n/a

PRPF31

Aliases
  
PRPF31, pre-mRNA processing factor 31, NY-BR-99, PRP31, RP11, SNRNP61

External IDs
  
MGI: 1916238 HomoloGene: 5980 GeneCards: PRPF31

PRP31 pre-mRNA processing factor 31 homolog (S. cerevisiae), also known as PRPF31, is a protein which in humans is encoded by the PRPF31 gene.

Contents

Function

PRPF31 is the gene coding for the splicing factor hPRP31. It is essential for the formation of the spliceosome hPRP31 is associated with the U4/U4 di-snRNP and interacts with another splicing factor, hPRP6, to form the U4/U6-U5 tri-snRNP. It has been shown that when hPRP31 is knocked down by RNAi, U4/U6 di-snPRNPs accumulate in the Cajal bodies and the U4/U6-U5 tri-snRNP cannot form.

PRPF31 is recruited to introns following the attachment of U4 and U6 RNAs and the 15.5K protein NHP2L1. The addition of PRPF31 is crucial for the transition of the spliceosomal complex to the activated state.

Clinical significance

A mutation in PRPF31 is one of 4 known mutations in splicing factors which are known to cause retinitis pigmentosa. The first mutation in PRPF31 was discovered by Vithana et al. in 2001. Retinitis pigmentosa (RP) is a clinically and genetically heterogeneous group of retinal dystrophies characterized by a progressive degeneration of photoreceptors, eventually resulting in severe visual impairment.

Inheritance

Mutations in PRPF31 are inherited in an autosomal dominant manner, accounting for 2.5% of cases of autosomal dominant retinitis pigmentosa (adRP) in a mixed UK population. However, the inheritance pattern of PRPF31 mutations is atypical of dominant inheritance, showing the phenomenon of partial penetrance, whereby a dominant mutations appear to "skip" generations. This is thought to be due to the presence of two wild type alleles, a high-expressivity allele and a low-expressivity allele. If a patient has a mutant allele and a high-expressivity allele, they do not show disease phenotype. If a patient has a mutant allele and a low-expressivity allele, the residual level of protein falls beneath the threahold for normal function, and so they do show disease phenotype. The inheritance pattern of PRPF31 can therefore be thought of as a variation of haploinsufficiency. This variant of haploinsufficiency is only seen in two other human diseases: Erythropoietic protoporphyria, caused by mutations in the FECH gene; and hereditary elliptocytosis, caused by mutations in the spectrin gene.

References

PRPF31 Wikipedia