Notation Beta(α, β, λ) | ||
Support x ∈ [ 0 ; 1 ] {\displaystyle x\in [0;1]\!} PDF (type I) ∑ j = 0 ∞ e − λ / 2 ( λ 2 ) j j ! x α + j − 1 ( 1 − x ) β − 1 B ( α + j , β ) {\displaystyle \sum _{j=0}^{\infty }e^{-\lambda /2}{\frac {\left({\frac {\lambda }{2}}\right)^{j}}{j!}}{\frac {x^{\alpha +j-1}\left(1-x\right)^{\beta -1}}{\mathrm {B} \left(\alpha +j,\beta \right)}}} CDF (type I) ∑ j = 0 ∞ e − λ / 2 ( λ 2 ) j j ! I x ( α + j , β ) {\displaystyle \sum _{j=0}^{\infty }e^{-\lambda /2}{\frac {\left({\frac {\lambda }{2}}\right)^{j}}{j!}}I_{x}\left(\alpha +j,\beta \right)} Mean (type I) e − λ 2 Γ ( α + 1 ) Γ ( α ) Γ ( α + β ) Γ ( α + β + 1 ) 2 F 2 ( α + β , α + 1 ; α , α + β + 1 ; λ 2 ) {\displaystyle e^{-{\frac {\lambda }{2}}}{\frac {\Gamma \left(\alpha +1\right)}{\Gamma \left(\alpha \right)}}{\frac {\Gamma \left(\alpha +\beta \right)}{\Gamma \left(\alpha +\beta +1\right)}}{}_{2}F_{2}\left(\alpha +\beta ,\alpha +1;\alpha ,\alpha +\beta +1;{\frac {\lambda }{2}}\right)} (see Confluent hypergeometric function) |
In probability theory and statistics, the noncentral beta distribution is a continuous probability distribution that is a generalization of the (central) beta distribution.
Contents
The noncentral beta distribution (Type I) is the distribution of the ratio
where
A Type II noncentral beta distribution is the distribution of the ratio
where the noncentral chi-squared variable is in the denominator only. If
Cumulative distribution function
The Type I cumulative distribution function is usually represented as a Poisson mixture of central beta random variables:
where λ is the noncentrality parameter, P(.) is the Poisson(λ/2) probability mass function, \alpha=m/2 and \beta=n/2 are shape parameters, and
The Type II cumulative distribution function in mixture form is
Algorithms for evaluating the noncentral beta distribution functions are given by Posten and Chattamvelli.
Probability density function
The (Type I) probability density function for the noncentral beta distribution is:
where
Transformations
If
If
Special cases
When